Math, asked by sachin6090, 10 months ago

a^x=b^y=c^Z. prove that abc=1​

Answers

Answered by khushikori87
1

hiiiiiii

sorryyyyyyyyyyy

i hate mathsssss

so i dont have the answer

Answered by Amanutkarsh
1

 {a}^{x}  =  {b}^{y}  =  {c}^{z}

Here,

 {a}^{x}  =  {b}^{y}  \\ a =  \sqrt[x]{( {b}^{y} )}  \\ a =   {b}^{ \frac{y}{x} }

 {b}^{y}  =  {c}^{z}  \\ b =  {c}^{ \frac{z}{y} }

 {c}^{z}  =  {a}^{x}  \\ c =  {a}^{ \frac{x}{z} }

Now,

abc =  >  {b}^{ \frac{y}{x} }  \times  {c}^{ \frac{z}{y} }  \times  {a} ^{ \frac{x}{z} }  \\  \\  \:  \:  \:  \:  \:   =  > {(bca)}^{0}   = 1

Hence, Proved that ABC = 1

Similar questions