Math, asked by hasinisekhar, 1 year ago

a=x+root (x^2+1),then show that x=1/2(a-a^-1)​

Answers

Answered by sivaprasath
5

Answer:

Step-by-step explanation:

Given :

a=x+\sqrt{x^2+1}

Then, prove that,

x = \frac{1}{2}(a - a^{-1})

Solution :

As Given,

a=x+\sqrt{x^2+1}

\frac{1}{a}=\frac{1}{x+\sqrt{x^2+1}}

By taking conjugate,

\frac{1}{a}=\frac{1}{x+\sqrt{x^2+1}}\times\frac{x-\sqrt{x^2+1}}{x-\sqrt{x^2+1}}

\frac{1}{a} = \frac{x-\sqrt{x^2+1}}{(x+\sqrt{x^2+1})(x-\sqrt{x^2+1})}

\frac{1}{a} = \frac{x-\sqrt{x^2+1}}{(x)^2-(\sqrt{x^2+1})^2}

\frac{1}{a} = \frac{x-\sqrt{x^2+1}}{x^2-(x^2+1)}

\frac{1}{a} = \frac{x-\sqrt{x^2+1}}{x^2-x^2-1}

\frac{1}{a} = \frac{x-\sqrt{x^2+1}}{-1}

\frac{1}{a} = \sqrt{x^2+1}-x

So,

a-a^{-1}=a-\frac{1}{a}=(x+\sqrt{x^2+1})-(\sqrt{x^2+1}-x)

a-a^{-1}=x+\sqrt{x^2+1}-\sqrt{x^2+1}+x

a-a^{-1}=2x

Hence,

\frac{1}{2}(a - a^{-1}) = \frac{2x}{2} = x

Hence proved,.


hasinisekhar: thanks
Similar questions