a2+1/a2=18 find (a-1/a)
Answers
Answered by
39
a^2 + 1/a^2 = 18
Add -2(a × 1/a) on both sides,
a^2 + 1/a^2 - 2(a × 1/a) = 18 - 2(a × 1/a)
(a - 1/a)^2 = 18 - 2
(a - 1/a)^2 = 16
a - 1/a = 4
i hope this will help you
(-:
Add -2(a × 1/a) on both sides,
a^2 + 1/a^2 - 2(a × 1/a) = 18 - 2(a × 1/a)
(a - 1/a)^2 = 18 - 2
(a - 1/a)^2 = 16
a - 1/a = 4
i hope this will help you
(-:
lollololololol:
thxx
Answered by
25
Correct Question :-
If a² + 1/a² = 18, then find the value of a - 1/a.
Answer :-
a - 1/a = 4
Solution :-
a² + 1/a² = 18
Subtract 2 on both sides
a² + 1/a² - 2 = 18 - 2
⇒ a² + 1/a² - 2 = 16
⇒ a² + 1²/a² - 2 = 16
It can be written as
⇒ (a)² + (1/a)² - 2(a)(1/a) = 16
We know that
(x - y)² = x² + y² - 2xy
Here x = a, y = 1/a
By substituting the values
⇒ (a - 1/a)² = 16
⇒ a - 1/a = √16
⇒ a - 1/a = 4
Therefore the value of a - 1/a is 4.
Identity used :-
• (x - y)² = x² + y² - 2xy
Similar questions