Math, asked by aadigupta17, 1 year ago

a2+1/a2=18,find the values of a+1/a and a-1/a

Answers

Answered by siyamittal595
21

a²+1/a²=18

(a+1/a)²-2×a×1/a=18

(a+1/a)²-2=18

(a+1/a)²=20

a+1/a=√20=2√5

Now :

(a-1/a)²+2×a×1/a=18

(a-1/a)²+2=18

(a-1/a)²=16

(a-1/a)=4

Answered by Anonymous
32

Correct Question :-

If a² + 1/a² = 18, find the values of a + 1/a and a - 1/a

Answer :-

(i) a + 1/a = 2√5

(ii) a - 1/a = 4

Solution :-

i) a² + 1/a² = 18

Add 2 on both sides

⇒ a² + 1/a² + 2 = 18 + 2

⇒ a² + 1/a² + 2 = 20

⇒ a² + 1²/a² + 2 = 20

⇒ (a)² + (1/a)² + 2(a)(1/a) = 20

[Because (x + y)² = x² + y² + 2xy above x = a, y = 1/a]

⇒ (a + 1/a)² = 20

⇒ a + 1/a = √20

⇒ a + 1/a = √4 * √5

⇒ a + 1/a = 2 * √5

⇒ a + 1/a = 2√5

(ii) a² + 1/a² = 18

Subtract 2 on both sides

⇒ a² + 1/a² - 2 = 18 - 2

⇒ a² + 1/a² - 2 = 16

⇒ a² + 1²/a² - 2 = 16

⇒ (a)² + (1/a)² - 2(a)(1/a) = 16

[Because (x - y)² = x² + y² - 2xy above x = a, y = 1/a]

⇒ (a - 1/a)² = 16

⇒ a - 1/a = √16

⇒ a - 1/a = 4

Identities used :-

(i) (x + y)² = x² + y² + 2xy

(ii) (x - y)² = x² + y² - 2xy

Similar questions