Math, asked by priyanshupadhi07, 4 months ago

a² + 1/a² =
a³ + 1/a³ =
a + 1/a =
a³ - 1/a³=
a² - 1/a² =
answer these equations.

Answers

Answered by mathdude500
2

Answer:

Question

Complete the equations :-

a² + 1/a² =

a³ + 1/a³ =

a + 1/a =

a³ - 1/a³=

a² - 1/a² =

Answer:-

Identity used :-

\bf \: {(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2}

\bf \: {(x - y)}^{2}  =  {x}^{2}  - 2xy +  {y}^{2}

\bf \: {x}^{2}  -  {y}^{2}  = (x + y)(x - y)

\bf \: {x}^{3}  +  {y}^{3}  = (x + y)( {x}^{2} - xy +  {y}^{2} )

\bf \: {x}^{3}  -  {y}^{3}  = (x - y)( {x}^{2}  + xy +  {y}^{2} )

Solution:-

\bf \:1. \:  {a}^{2}  + \dfrac{1}{ {a}^{2} }  =  {(a + \dfrac{1}{a}) }^{2}  - 2 \times a \times \dfrac{1}{a}

\bf \:\:  {a}^{2}  + \dfrac{1}{ {a}^{2} }  =  {(a + \dfrac{1}{a}) }^{2}  - 2

\bf \:2. \:  {a}^{3}  + \dfrac{1}{ {a}^{3} }  = (a + \dfrac{1}{a} )( {a}^{2}  - a \times \dfrac{1}{a}  + \dfrac{1}{ {a}^{2} } )

\bf \:(a + \dfrac{1}{a} )( {a}^{2}  -1  + \dfrac{1}{ {a}^{2} } )

\bf \:3. \: a + \dfrac{1}{a}

\bf \:4. \:  {a}^{3}  - \dfrac{1}{ {a}^{3} }  = (a - \dfrac{1}{a} )( {a}^{2}  + a \times \dfrac{1}{a}  + \dfrac{1}{ {a}^{2} } )

\bf \: = (a  -  \dfrac{1}{a} )( {a}^{2}   + 1+ \dfrac{1}{ {a}^{2} } )

\bf \:5. \:  {a}^{2}  - \dfrac{1}{ {a}^{2} }  = (a + \dfrac{1}{a} )(a - \dfrac{1}{a} )

Similar questions