Math, asked by krishmurthyb5, 2 months ago

a² + 2ab + b² – 16
Factorise these values

Answers

Answered by Oneioiic14
39

\large\star{\boxed{\rm{\purple{ (a+b)² \  =  \ a² \  + \  b² \ + \ 2ab}}}}

So, a² + 2ab + b² – 16 can be written as (a + b)² - 16.

\tt{↬\ (a + b)² \  -  \ 16}

Answered by mathdude500
3

\large\underline\blue{\bold{Given \:  Question }}

 \rm :  \implies \:Factorise \:  {a}^{2}  + 2ab +  {b}^{2}  - 16

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\Large{\bold{{\underline{Formula \:  Used \::}}}}  \end{gathered}

(1). \:  \boxed {\pink{\rm :  \implies \:  {(x + y)}^{2}  =  {x}^{2}   + 2xy +  {y}^{2} }}

 (2). \: \boxed {\pink{\rm :  \implies \:  {x}^{2}  -  {y}^{2}  = (x + y)(x - y) }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

 \rm :  \implies \:{a}^{2}  + 2ab +  {b}^{2}  - 16

 \rm :  \implies \:({a}^{2}  + 2ab +  {b}^{2})  - 16

 \rm :  \implies \: {(a + b)}^{2}  -  {(4)}^{2}

 \rm :  \implies \:(a + b + 4)(a + b - 4)

─━─━─━─━─━─━─━─━─━─━─━─━─

Explore more :-

 \boxed {\pink{\rm  \: (a + b)^{2} = {a}^{2} + {b}^{2} + 2ab}}

 \boxed {\pink{\rm  \: (a  - b)^{2} = {a}^{2} + {b}^{2}  - 2ab }}

 \boxed {\pink{\rm  \: (a + b)(a - b) = {a}^{2} - {b}^{2}  }}

 \boxed {\pink{\rm  \: (a + b + c)^{2} = {a}^{2} + {b}^{2} + {c}^{2} +2ab + 2bc + 2ca }}

 \boxed {\pink{\rm  \: (a + b) ^{3} = {a}^{3} + b^{3} + 3ab(a + b)  }}

 \boxed {\pink{\rm  \: (a  -  b) ^{3} = {a}^{3}  -  b^{3}  -  3ab(a  -  b)  }}

 \boxed {\pink{\rm  \: a ^{3} + {b}^{3} = (a + b)(a ^{2} + {b}^{2} - ab)  }}

 \boxed {\pink{\rm  \: a ^{3}  -  {b}^{3} = (a  -  b)(a ^{2} + {b}^{2}  +  ab)  }}

Similar questions