a2-3a+1=0 then find a3+1/a3
Answers
Answered by
33
Correct Question :-
If a² - 3a + 1 = 0 then, find the value of a³ + 1/a³
Answer :-
a³ + 1/a³ = 18
Solution :-
First find the value of a + 1/a
a² - 3a + 1 = 0
⇒ a² - 3a = -1
⇒ a(a - 3) = - 1
⇒ a - 3 = - 1/a
⇒ a - 3 + 1/a = 0
⇒ a + 1/a = 3
By cubing on both sides
(a + 1/a)³ = (3)³
⇒ (a + 1/a)³ = 27
⇒ (a)³ + (1/a)³ + 3(a)(1/a)(a + 1/a) = 27
[Since (a + b)³ = a³ + b³ + 3ab(a + b)]
⇒ a³ + 1³/a³ + 3(a + 1/a) = 27
⇒ a³ + 1/a³ + 3(a + 1/a) = 27
⇒ a³ + 1/a³ + 3(3) = 27
[ Since a + 1/a = 3]
⇒ a³ + 1/a³ + 9 = 27
⇒ a³ + 1/a³ = 27 - 9
⇒ a³ + 1/a³ = 18
Therefore the value of a³ + 1/a³ = 18
Identity used :-
• (a + b)³ = a³ + b³ + 3ab(a + b)
Similar questions