Geography, asked by ovesj, 1 year ago

a2-3a+1=0 then find a3+1/a3​

Answers

Answered by Anonymous
33

Correct Question :-

If a² - 3a + 1 = 0 then, find the value of a³ + 1/a³

Answer :-

a³ + 1/a³ = 18

Solution :-

First find the value of a + 1/a

a² - 3a + 1 = 0

⇒ a² - 3a = -1

⇒ a(a - 3) = - 1

⇒ a - 3 = - 1/a

⇒ a - 3 + 1/a = 0

⇒ a + 1/a = 3

By cubing on both sides

(a + 1/a)³ = (3)³

⇒ (a + 1/a)³ = 27

⇒ (a)³ + (1/a)³ + 3(a)(1/a)(a + 1/a) = 27

[Since (a + b)³ = a³ + b³ + 3ab(a + b)]

⇒ a³ + 1³/a³ + 3(a + 1/a) = 27

⇒ a³ + 1/a³ + 3(a + 1/a) = 27

⇒ a³ + 1/a³ + 3(3) = 27

[ Since a + 1/a = 3]

⇒ a³ + 1/a³ + 9 = 27

⇒ a³ + 1/a³ = 27 - 9

⇒ a³ + 1/a³ = 18

Therefore the value of a³ + 1/a³ = 18

Identity used :-

• (a + b)³ = a³ + b³ + 3ab(a + b)

Similar questions