Math, asked by swati401594, 11 months ago

a²-4b²+a³-8b³-(a-2b)²;
Factorise the given expression completely. ​

Answers

Answered by manohar1234
1

Step-by-step explanation:

click on the photo and hope you like it

Attachments:
Answered by harendrachoubay
15

The factorise the given expression a^2-4b^2+a^3-8b^3-(a-2b)^2 is (a-2b)(4b+a^{2}+2ab+4b^{2}).

Step-by-step explanation:

We have,

a^2-4b^2+a^3-8b^3-(a-2b)^2

To factorise the given expression=?

=(a^2-4b^2)+(a^3-8b^3)-(a-2b)^2

=[a^2-(2b)^2]+[a^3-(2b)^3]-(a-2b)^2

=(a+2b)(a-2b)+(a-2b)(a^{2}+2ab+4b^{2})-(a-2b)^2

Using identities,

a^{2}-b^{2} =(a+b)(a-b) and

a^{3}-b^{3} =(a-b)(a^{2}+ab+b^{2})

Taking (a-2b) as common, we get

=(a-2b)[(a+2b)+(a^{2}+2ab+4b^{2})-(a-2b)]

=(a-2b)(a+2b+a^{2}+2ab+4b^{2}-a+2b)

=(a-2b)(4b+a^{2}+2ab+4b^{2})

=(a-2b)(4b+a^{2}+2ab+4b^{2})

Hence, the factorise the given expression a^2-4b^2+a^3-8b^3-(a-2b)^2 is (a-2b)(4b+a^{2}+2ab+4b^{2}).

Similar questions