Math, asked by sushmachauhan911, 11 months ago

(a²-b²)³ + (b²-c²)³ + (c²-a²)³/(a-b)³ + (b-c)³ + (c-a)³​

Answers

Answered by sivaprasath
2

Answer:

(a + b)(b + c)(c + a)

Step-by-step explanation:

Given :

To simplify the expression,

\frac{(a^2-b^2)^3 +(b^2-c^2)^3+(c^2-a^2)^3}{(a-b)^3 +(b-c)^3+(c-a)^3}

Solution :

We know that,

x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)

Simplifying the numerator,

As,

x =(a^2 - b^2)

y=(b^2-c^2)

z=(c^2-a^2)

So,

x+y+z = (a^2-b^2)+(b^2-c^2)+(c^2-a^2)=0,

x^3 + y^3 + z^3 - 3xyz = (0)(x^2 + y^2 + z^2 - xy - yz - zx)

x^3 + y^3 + z^3 - 3xyz = 0

x^3 + y^3 + z^3 = 3xyz

(a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3=3(a^2-b^2)(b^2-c^2)(c^2-a^2)

We know that,

x^2-y^2=(x+y)(x-y)

So,

(a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3=3(a^2-b^2)(b^2-c^2)(c^2-a^2)=3(a-b)(a+b)(b-c)(b+c)(c-a)(c+a)

Simplifying the denominator,

As,

x=(a-b)^3

y=(b-c)^3

z=(c-a)^3

So,

x+y+z=(a-b)+(b-c)+(c-a)=0

x^3 + y^3 + z^3 - 3xyz = (0)(x^2 + y^2 + z^2 - xy - yz - zx)

x^3 + y^3 + z^3 - 3xyz = 0

x^3 + y^3 + z^3 = 3xyz

(a-b)^3+(b-c)^3+(c-a)^3=3(a-b)(b-c)(c-a)

By substituting the values of numerator & denominator,

We get,

\frac{(a^2-b^2)^3 +(b^2-c^2)^3+(c^2-a^2)^3}{(a-b)^3 +(b-c)^3+(c-a)^3}=\frac{3(a-b)(a+b)(b-c)(b+c)(c-a)(c+a)}{3(a-b)(b-c)(c-a)}=(a+b)(b+c)(c+a)

Similar questions