(a²+b²)x² - 2(ac+bd)x + c² + d² = 0
If the following equation has equal roots, then
a) ab = cd b) ad = bc c) ad = √bc d) ab = √cd
please answer
Answers
Answered by
2
Answer:
Option b) ad = bc
Step-by-step explanation:
For equal roots of Ax²+Bx+C=0, B²-4AC=0
Here, A=(a²+b²), B= - 2(ac+bd), C=(c²+d²)
∴ B²-4AC=[ - 2(ac+bd)]² - 4(a²+b²)(c²+d²)
Since B²-4AC=0, B² = 4AC
∴ [ - 2(ac+bd)]² = 4(a²+b²)(c²+d²)
4[(a²c²+b²d²+2abcd)] = 4[a²(c²+d²)+b²(c²+d²)] = 4[a²c²+a²d²+b²c²+b²d²)]
∴ a²c²+b²d²+2abcd = a²c²+a²d²+b²c²+b²d²
(cancelling similar terms on both sides)
∴ 2abcd = a²d²+b²c²
or (ad)²+(bc)²=2abcd
(ad)²+(bc)²-2abcd = 0
∴ (ad-bc)²=0
or ad-bc=0
∴ ad = bc
Answered by
1
Answer:
(a^2 + b^2)x^2 - 2(ac + bd)x + (c^2 + d^2) = 0 has equal roots.Therefore, discriminant = 0 Thus [2(ac + bd)]^2 + 4(a^2 + b^2) (c^2 + d^2) a^2c^2 + ...
Similar questions