Math, asked by ashish116, 1 year ago

(a2+b2) (x2+y2)=(ax+by)2;prove that a/x=b/y

Answers

Answered by kinkymyke
30
refer pic for complete solution
Attachments:
Answered by harendrachoubay
25

\dfrac{a}{x}=\dfrac{b}{y}, proved.

Step-by-step explanation:

We have,

(a^2+b^2)(x^2+y^2)=(ax+by)^2

To prove that, \dfrac{a}{x}=\dfrac{b}{y}

(a^2+b^2)(x^2+y^2)=(ax+by)^2

a^2x^2+a^2y^2+b^2x^2+b^2y^2=(ax)^2+(by)^2+2(ax)(by)

a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+b^2y^2+2abxy

Using the algebraic identity,

(x+y)^{2}=x^{2}+y^{2}+2xy

a^2x^2+a^2y^2+b^2x^2+b^2y^2-(a^2x^2+b^2y^2+2abxy)=0

a^2x^2+a^2y^2+b^2x^2+b^2y^2-a^2x^2-b^2y^2-2abxy=0

a^2y^2+b^2x^2-2abxy=0

(ay)^2+(bx)^2-2(ay)(bx)=0

(ay-bx)^{2}=0

ay-bx=0

⇒ ay = bx

\dfrac{a}{x}=\dfrac{b}{y}, proved.

Similar questions