a²x+b²y = c²
b²x + a²y = d²
Answers
Answer:
━━━━━━━━━━━━━━━━━━━━
✤ Required Answer:
✒️ GiveN:
Equation 1) a²x + b²y = c²
Equation 2) b²x + a²y = d²
✒️ To FinD:
Solving for x and y
━━━━━━━━━━━━━━━━━━━━
✤ How to solve?
Here, we have two simultaneous linear equations in two variables i.e x and y. We can see that there coefficients are a² and b² alternatively, and hence we can use the elimination method to solve this equation.
━━━━━━━━━━━━━━━━━━━━
✤ Solution:
We have,
a²x + b²y = c² ---------(1)
b²x + a²y = d² ----------(2)
Multiplying eq.(1) with b²
➝ b²(a²x + b²y) = b²c²
➝ a²b²x + b⁴y = b²c²
Now, multiplying eq.(2) with a²
➝ a²(b²x + a²y) = a²d²
➝ a²b²x + a⁴y = a²d²
Subtracting the equations will got above,
a²b²x + b⁴y = b²c²
a²b²x + a⁴y = a²d²
➝ a²b²x + b⁴y - (a²b²x + a⁴y) = b²c² - a²d²
➝ a²b²x + b⁴y - a²b²x - a⁴y = b²c² - a²d²
[ +a²b²x and -a²b²x cancels out]
➝ b⁴y - a⁴y = b²c² - a²d²
➝ y(b⁴ - a⁴) = b²c² - a²d²
➝ y = b²c² - a²d² / b⁴ - a⁴
➝ y = a²d² - b²c² / a⁴ - b⁴
Putting the value of y in eq.(1),
➝ a²x + b²(b²c² - a²d² / b⁴ - a⁴) = c²
➝ a²x + b⁴c² - a²b²d² / b⁴ - a⁴ = c²
➝ a²x = c² - (b⁴c² - a²b²d² / b⁴ - a⁴)
[ Taking LCM in RHS ]
➝ a²x = c²(b⁴ - a⁴) - b⁴c² + a²b²d / b⁴ - a⁴
➝ a²x = b⁴c² - a⁴c² - b⁴c² + a²b²d² / b⁴ - a⁴
➝ a²x = -a⁴c² + a²b²d² / b⁴ - a⁴
[ Taking a² common from both sides ]
➝ a²x = a² ( -a²c² + b²d² / b⁴ - a⁴ )
➝ x = -a²c²+ b²d² / b⁴ - a⁴
➝ x = a²c² - b²d² / a⁴ - b⁴
❒ So, Values of x and y:
pls mark as brainliest
Answer:
answer for the given problem is given