Math, asked by UjjwalPriyadarshi, 1 year ago

a4 + a2 + 1 . Factorise it.

Answers

Answered by piyush357
35
a(a2)2+2a2+1-a2
(a2+1)2-a2
(a2+1)2-(a)2
(a2+1-a)(a2+1+a)
(a2-a+1)(a2+a+1) ans

plz mark as brainliest...

UjjwalPriyadarshi: mind blowing answer
piyush357: thnx
Answered by mysticd
11

Answer:

 Factors \: of \: a^{4}+a^{2}+1\\=(a+1+\sqrt{a})(a+1-\sqrt{a})(a^{2}-a+1)

Step-by-step explanation:

Given \:expression a^{4}+a^{2}+1\\=(a^{4}+2a^{2}+1)-a^{2}\\=[(a^{2})^{2}+2\times a^{2}\times 1+1^{2}]-a^{2}\\=(a^{2}+1)^{2}-a^{2}

=(a^{2}+1+a)(a^{2}+1-a)

/* By algebraic identity:

-y²=(x+y)(x-y) */

=(a^{2}+2a+1-a)(a^{2}+1-a)

=[(a^{2}+2\times a\times 1+1)-(\sqrt{a}^{2})](a^{2}+1-a)

=[(a+1)^{2}-(\sqrt{a})^{2}](a^{2}-a+1)

=(a+1+\sqrt{a})(a+1-\sqrt{a})(a^{2}-a+1)

Therefore,

 Factors \: of \: a^{4}+a^{2}+1\\=(a+1+\sqrt{a})(a+1-\sqrt{a})(a^{2}-a+1)

•••♪

Similar questions