a⁴-b⁴+2b²-1 factorise
Answers
Answered by
6
Best Answer
Q.1:
i) 4x² - 4a²x + a⁴ - b⁴ = 0
ii) Grouping, {(2x)² - 2(2x)(a²) + (a²)²} - (b²)² = 0
==> (2x - a²)² - (b²)² = 0
iii) The above is of the form a² - b² = (a - b)(a + b),
here a = (2x - a²) and b = b²
So, (2x - a²)² - (b²)² = {(2x - a²) + (b²)}*{(2x - a²) - (b²)}
= {2x - (a² - b²)}*{2x - (a² + b²)} = 0
==> Either {2x - (a² - b²)} = 0 or {2x - (a² + b²)} = 0
So, when {2x - (a² - b²)} = 0, x = (a² - b²)/2
and when {2x - (a² + b²)} = 0, x = (a² + b²)/2
Q.1:
i) 4x² - 4a²x + a⁴ - b⁴ = 0
ii) Grouping, {(2x)² - 2(2x)(a²) + (a²)²} - (b²)² = 0
==> (2x - a²)² - (b²)² = 0
iii) The above is of the form a² - b² = (a - b)(a + b),
here a = (2x - a²) and b = b²
So, (2x - a²)² - (b²)² = {(2x - a²) + (b²)}*{(2x - a²) - (b²)}
= {2x - (a² - b²)}*{2x - (a² + b²)} = 0
==> Either {2x - (a² - b²)} = 0 or {2x - (a² + b²)} = 0
So, when {2x - (a² - b²)} = 0, x = (a² - b²)/2
and when {2x - (a² + b²)} = 0, x = (a² + b²)/2
Answered by
36
Hi ,
a⁴ - b⁴ + 2b² - 1
= a⁴ - ( b⁴ - 2b² + 1 )
= a⁴ - [ ( b² )² - 2 × b² × 1 + 1² ]
= ( a² )² - ( b² - 1 )²
= ( a² + b² - 1 ) [ a² - ( b² - 1 ) ]
= ( a² + b² - 1 ) ( a² - b² + 1 )
I hope this helps you.
:)
a⁴ - b⁴ + 2b² - 1
= a⁴ - ( b⁴ - 2b² + 1 )
= a⁴ - [ ( b² )² - 2 × b² × 1 + 1² ]
= ( a² )² - ( b² - 1 )²
= ( a² + b² - 1 ) [ a² - ( b² - 1 ) ]
= ( a² + b² - 1 ) ( a² - b² + 1 )
I hope this helps you.
:)
Similar questions