Math, asked by ira23, 10 months ago

aaahhh guyz plz help...​

Attachments:

Answers

Answered by ItzAditt007
3

Answer:-

Your Answer Is Option (a) 4.

Explanation:-

Given:-

  • A rational number \bf\dfrac{23457}{2^3\times 5^4}.

To Find:-

  • The decimal expansion wil terminate after how many decimal places.

How To Do??

  • Here we will convert the denominator which is in the form \tt 2^n\times 5^m to \tt 2^m\times5^m. Where n<m.

Therefore,

 \\ \tt\implies \dfrac{23457}{ {2}^{3} \times  {5}^{4}  }  \rm \:  \: can \: be \:  \: written \:  \: as  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \\  \\ \tt\implies \frac{23457}{{2}^{3}  \times  {5}^{4} }  \times  \frac{ 2 }{ 2  }  \:  \rm \:  \:  as \:  \:   \frac{2}{2}  = 1 \: and \:  \: 1 \times anyno. = same \: no.

So by solving,

 \\ \tt\mapsto\frac{23457}{ {2}^{3}  \times  {5}^{4} }  \times  \dfrac{2}{2} .

 \\  \tt =  \frac{(23457)2}{2^{3} \times 2 \times 5 {}^{4}  }.

 \\  \tt =  \frac{46917}{ {2}^{4}  \times  {5}^{4} } .

 \\  \tt =  \frac{46914}{(2 \times 5) {}^{4} } .

 \\  \tt =  \frac{46914}{10 {}^{4} } .

 \\  \tt =  \frac{46914}{10000}.

 \\  \tt = 4. \bf \underline{6914}.

So we can see that the given rational number's decimal expansion terminate aftwr 4 decimal places.

So The Final Answer Is Option (2).

Similar questions