AB & CD are two chords such that AB= 10 cm,CD= 24 cm and AB parallel to CD the distance between chords is 17 cm. find the radius of the circle
Answers
Step-by-step explanation:
HOPE THIS WILL HELP U
THNQQ SO MUCH
Step-by-step explanation:
Let r be the radius of the circle. Let OP and OQ
be perpendiculars drawn from O on CD and AB
respectively .
CP = 1/2 CD = 12cm
and AQ = 1/2AB = 5cm
In right triangle OPC,
OC*2 = OP*2 + CP*2 ( Pythagorean theorem)
or r*2 = d*2 + 144 .....(1)
In right triangle OQA,
OA*2 = OQ*2 + AQ*2
r*2 = (d+17)*2 + 25 ...(2)
From equation (1) &(2)
d*2 +144 = (d+17)*2 +25
d*2 + 144 = (d*2 + 289 + 34d) + 25 【Identity (a+b)*2 = a*2 + b*2 + 2ab】
d*2 +144 = d*2 + 289 + 34d +25
144 = 314 +34d
34d = 314 - !44
d = 170/34
d = 5 cm
r*2 = (5)*2 + (12)*2. 【From (1)】
r*2 = 25 + 144
r = √169
r = 13 cm
radius = 13cm
Hope u understand!!