AB and CD are two equal chord of a circle with centre O. if AOB=70*, the value of COD is. (I) 110* (ii) 70* (iii) 35* (iv) 80*.
Answers
Answered by
0
Answer:
From the given figure
InΔAOBandΔCOD
OA=OD[bothareradius]
OB=OC[bothareradius]
AB=DC[Chordareequal]
∴ΔAOB≅ΔCOD(bys−s−scongruent)
∴∠AOB=∠COD=70
∘
Now
InΔOCD
OC=OD(bothareradius)
then,∠ODC=∠OCD=x(Let)
∴sumofangleofΔ=180
∘
∴x+x+70
∘
=180
∘
⇒2x=180
∘
−70
∘
∴x=
2
110
∘
Hence
∠ODC=55
∘
∠OCD=55
∘
∠COD=70
∘
Attachments:
Answered by
0
Answer:
From the given figure
InΔAOBandΔCOD
OA=OD[bothareradius]
OB=OC[bothareradius]
AB=DC[Chordareequal]
∴ΔAOB≅ΔCOD(bys−s−scongruent)
∴∠AOB=∠COD=70
∘
Now
InΔOCD
OC=OD(bothareradius)
then,∠ODC=∠OCD=x(Let)
∴sumofangleofΔ=180
∘
∴x+x+70
∘
=180
∘
⇒2x=180
∘
−70
∘
∴x=
2
110
∘
Hence
∠ODC=55
∘
∠OCD=55
∘
∠COD=70
∘
Step-by-step explanation:
I hope you are helpful
plase flow me and like
Similar questions