Math, asked by junedosmani512, 6 hours ago

AB and CD are two equal chord of a circle with centre O. if AOB=70*, the value of COD is. (I) 110* (ii) 70* (iii) 35* (iv) 80*.

Answers

Answered by sharmasuman5024
0

Answer:

From the given figure

InΔAOBandΔCOD

OA=OD[bothareradius]

OB=OC[bothareradius]

AB=DC[Chordareequal]

∴ΔAOB≅ΔCOD(bys−s−scongruent)

∴∠AOB=∠COD=70

Now

InΔOCD

OC=OD(bothareradius)

then,∠ODC=∠OCD=x(Let)

∴sumofangleofΔ=180

∴x+x+70

=180

⇒2x=180

−70

∴x=

2

110

Hence

∠ODC=55

∠OCD=55

∠COD=70

Attachments:
Answered by vivekkumarpatar2007
0

Answer:

From the given figure

InΔAOBandΔCOD

OA=OD[bothareradius]

OB=OC[bothareradius]

AB=DC[Chordareequal]

∴ΔAOB≅ΔCOD(bys−s−scongruent)

∴∠AOB=∠COD=70

Now

InΔOCD

OC=OD(bothareradius)

then,∠ODC=∠OCD=x(Let)

∴sumofangleofΔ=180

∴x+x+70

=180

⇒2x=180

−70

∴x=

2

110

Hence

∠ODC=55

∠OCD=55

∠COD=70

Step-by-step explanation:

I hope you are helpful

plase flow me and like

Similar questions