Math, asked by BestQuestion, 4 months ago

AB and CD are two parallel chords of a circle , Which arc an oppoite Sides of the centre , Such that AB = 10 cm, CD =24 cm and the distance between AB and CD is 17 cm . Find the radius of the Circle .​

Answers

Answered by itzBrainlymaster
1

Answer:

answer is :- 13cm.

please see the attached picture ❤

Attachments:

Anonymous: Nice
Answered by Anonymous
48

━━━━━━━━━━━━━━━━━

  \large\bf \pink{Answer}

 \small \bf \red{Given =  }  { AB  \: and  \: CD \:  are \:  two  \: parellel  \: Chords \:  of \:  a \:  circle  \: , Which \:  arc \:  on \:  opposite  \: Side \:  Of  \: the \:  centre.}

 \small \bf{AB = \:  10 cm \:  , CD  \: = 24 cm}

 \small \bf{Distance  \: Between  \: AB \:  and \:  CD \:  = 17 cm}

 \bf \red{To \:  Find} \small \bf{  \: = Radius ?}

 \small \bf\red{Construction}=  \small{Draw \:  OP  \perp AB \:  and \:  OQ  \perp CD  \: .  \: Join \:  OB  \: and \:  OD}

 \small\bf \red{Procedure =} \small{ Since AB \:   ||  \:  CD and OP \perp AB , OQ  \perp \: CD}

 \small \bf{ \therefore \: Point  \: P,  \: O \:  and \:  Q \:  are  \: Collinear.}

 \small \bf{ Let     \:  \:  \:  \:  \: OP \:  = x \:  cm}

 \small \bf{Then , OP = x cm } \\\small \bf \: {OQ = ( 17- x ) cm}

  \small\bf {PB = \frac{10}{2} = 5 \: cm }

  \small\bf{  \because \: \perp From \:  the  \: centre \:  bisects \:  the \:  chord }

 \small \bf{QD = \frac{24}{2} = 12 cm}

 \small \bf{In rt.  \triangle OPB} \:  \:  \:  \:  \:  \:  \: r^{2} = x^{2} + 5^{2} ....(1)

 \small \bf{In  \: rt.  \: OQD , \:  \: r^{2} = (17 - x)^{2} + 12^{2} }

 \small \bf{From (1) and (2) , We \:  have}

  \small\bf {x^{2} + 25 = (17 - x)^{2} + 12^{2} }

 \small \bf{ \implies \: x^{2} +25 = 289 + x^{2} - 34x + 144   }

 \small \bf{ \implies \: x^{2} - x^{2} + 38x = 289 + 144 - 25 }

 \small \bf{ \implies \: 34x = 408}

 \small \bf{ \implies \: x = 12 \: cm}

 \small  \bf{Using \:  the \:  Value  \: of  \: x \:  in \:  (1)  \: we get}

 \small \bf{r^{2}  = 12^{2} + 5^{2} = 144 + 25 = 169}

 \small \bf  \red{ \therefore \: Radius \: (r) = 13 \: cm}

Attachments:
Similar questions