AB and CD are two straight lines which intersect at point O. ∠AOD and ∠COB are vertically opposite to each other. If ∠AOC is 80°, find the value of ∠AOD and ∠DOB
Answers
Let ∠AOD=4x and ∠DOB=5x
Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180
Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘
Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)
Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180
Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘
Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘
Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180
Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘
Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘
Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x=
Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9
Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180
Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 ∘
Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 ∘
Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 ∘
Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 ∘ =20
Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 ∘ =20 ∘
Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 ∘ =20 ∘
Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 ∘ =20 ∘ ∠AOD=4x
Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 ∘ =20 ∘ ∠AOD=4x⇒∠AOD=4×20
Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 ∘ =20 ∘ ∠AOD=4x⇒∠AOD=4×20 ∘
Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 ∘ =20 ∘ ∠AOD=4x⇒∠AOD=4×20 ∘ =80
Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 ∘ =20 ∘ ∠AOD=4x⇒∠AOD=4×20 ∘ =80 ∘
Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 ∘ =20 ∘ ∠AOD=4x⇒∠AOD=4×20 ∘ =80 ∘
Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 ∘ =20 ∘ ∠AOD=4x⇒∠AOD=4×20 ∘ =80 ∘ Now ∠COB=∠AOD (vertically opposite angles)
Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 ∘ =20 ∘ ∠AOD=4x⇒∠AOD=4×20 ∘ =80 ∘ Now ∠COB=∠AOD (vertically opposite angles)⇒∠COB=80
Let ∠AOD=4x and ∠DOB=5x∠AOD+∠DOB=180 ∘ (Adjacent angle on straight line are supplementary)⇒4x+5x=180 ∘ ⇒9x=180 ∘ ⇒x= 9180 ∘ =20 ∘ ∠AOD=4x⇒∠AOD=4×20 ∘ =80 ∘ Now ∠COB=∠AOD (vertically opposite angles)⇒∠COB=80 ∘
hope it helps you ✌️✅✅✅
Hope it will be helpful for you.. Please mark me as a brainliest answer