Ab boxes 35 between of soft drink of the same size the things are arranged in two layer contains three rows of
Answers
Answer:
It is given that the box contains 3 rows and 5 columns.
Thus, the number of tins in the box = 3 \times 5=153×5=15
Since, the box contains 2 layers, we have,
2\times 15=302×15=30
Thus, the total number of tins = 30
To determine the volume of the tin, let us use the volume of the cylinder formula,
V=\pi r^2 hV=πr2h
Since, d=6d=6 ⇒ r=\frac{6}{2} =3r=26=3 and h=12h=12
Substituting these values in the formula, V=\pi r^2 hV=πr2h , we get,
\begin{lgathered}V=(3.14)(3)^2(12)\\V=(3.14)(9)(12)\\V=339.12 \ cm^3\end{lgathered}V=(3.14)(3)2(12)V=(3.14)(9)(12)V=339.12 cm3
Thus, volume of the tins = 339.12 \mathrm \ {cm}^{3}339.12 cm3
Volume of the box = Number of tins × Volume of the tins
Substituting the values, we get,
\begin{lgathered}V=30 \times 339.12\\V=10173.6 \ cm^3\end{lgathered}V=30×339.12V=10173.6 cm3
Thus, the volume of the box is 10173.6 \ cubic \ centimeters10173.6 cubic centimeters
[HeY Mate]
Answer:
It is given that the box contains 3 rows and 5 columns.
Thus, the number of tins in the box = 3 \times 5=153×5=15
Since, the box contains 2 layers, we have,
2\times 15=302×15=30
Thus, the total number of tins = 30
To determine the volume of the tin, let us use the volume of the cylinder formula,
V=\pi r^2 hV=πr2h
Since, d=6d=6 ⇒ r=\frac{6}{2} =3r=26=3 and h=12h=12
Substituting these values in the formula, V=\pi r^2 hV=πr2h , we get,
V=(3.14)(3)^2(12)\\V=(3.14)(9)(12)\\V=339.12 \ cm^3\end{lgathered}V=(3.14)(3)2(12)V=(3.14)(9)(12)V=339.12 cm3
Thus, volume of the tins = 339.12 \mathrm \ {cm}^{3}339.12 cm3
Volume of the box = Number of tins × Volume of the tins
Substituting the values, we get,
V=30 \times 339.12\\V=10173.6 \ cm^3\end{lgathered}V=30×339.12V=10173.6 cm3
Thus, the volume of the box is 10173.6 \ cubic \ centimeters10173.6 cubic centimeters
I Hope It Helps You✌️