Math, asked by sneha2052, 2 months ago

AB is a radius of a circle with centre O . C is a point on the circle. If angle OBC = 60° then find the value of angle OCA
please give right answer​

Answers

Answered by samalbishnu001
6

Answer:

i think the answer is 0 degreeas because O andA lies in the same point

Answered by SilverPebble
80

\Large\bf\blue{Given : } \:

AB is a diameter of a circle with centre O . C is a point on the circle.

\Large\bf\blue{ To  \:  \: find: } \:

\large\mathrm{Value  \: of \:  \angle {OCA}} \:

 \Large\bf\blue{ \: Solution  : } \:

In the figure,

\mathrm{AO = OB ( radius  \: of  \: the \:  circle) } \:

\mathrm{AB \:  is \:  the \:  Diameter \: of \: the \: circle} \:

\mathrm{ In  \:  \:  \: \triangle{BOC,}} \:

\mathrm{ \angle{BOC} = 90^{\circ}} \:

we know that,

Sum of all angles of triangle = 180°

ie.,

\mathrm{\angle{BOC} + \angle{ OBC}+  \angle{OCB}= 180^\circ} \:

\implies\mathrm{90^\circ + 60^\circ + \angle{OCB} = 180^\circ} \\ \\ \implies \mathrm{150^\circ + \angle{OCB}  = 180^\circ} \\ \\ \implies \mathrm{\angle{OCB} = 180^\circ - 150^\circ} \\ \\ \implies \fbox{\mathrm{\angle{OCB} = 30^\circ}} \:

Now,

In the given figure :

\mathrm{\angle{ACB} = 60 ^\circ}  \:

  \rightarrow\mathrm{ \angle{ACO} + \angle {BCO \:  = 60 \degree}} \:

\rightarrow\mathrm{\angle{ACO} + 30^\circ = 60^\circ }\:

\rightarrow\mathrm{\angle{ACO} =  60^\circ - </p><p>30^\circ}  \:

\rightarrow\fbox\mathrm{\angle{ACO} = 30^\circ} \:

\huge\mathfrak\purple{Solved.} \:  \:  \:  \:

Attachments:
Similar questions