ΔABC ~ ΔDEF and their areas are respectively 64cm2 and 121 cm2. If EF = 15.4 cm., then find BC.
Answers
Given:-
ΔABC ~ ΔDEF
Area of ΔABC = 64cm²
Area of ΔDEF = 121cm²
To find :-
Find BC
Solution:-
(If two triangles are similar , ratio of their area is square of corresponding sides)
Step-by-step explanation:
ΔABC ~ ΔDEF
Area of ΔABC = 64cm²
Area of ΔDEF = 121cm²
To find :-
Find BC
Solution:-
\sf\implies\dfrac{area\:of \:Triangle\:ABC}{area\:of\:Triangle\:DE F} = \dfrac{AB^2}{DE^2} = \dfrac{AC^2}{DF^2} = \dfrac{BC^2}{EF^2}⟹
areaofTriangleDEF
areaofTriangleABC
=
DE
2
AB
2
=
DF
2
AC
2
=
EF
2
BC
2
(If two triangles are similar , ratio of their area is square of corresponding sides)
\sf\implies\dfrac{64}{121} = \dfrac{BC^2}{EF^2}⟹
121
64
=
EF
2
BC
2
\sf\implies\dfrac{8^2}{11^2}= \dfrac{BC^2}{15.4^2}⟹
11
2
8
2
=
15.4
2
BC
2
\sf\implies\dfrac{8}{11} = \dfrac{BC}{15.4}⟹
11
8
=
15.4
BC
\sf\implies BC = \dfrac {8\times 15.4}{11}⟹BC=
11
8×15.4
\sf\implies BC = 8\times 1.4⟹BC=8×1.4
\sf\implies BC = 11.2⟹BC=11.2
\Large\tt\red{Therefore\:BC\:= 11.2}ThereforeBC=11.2