Math, asked by snehabharti20, 9 months ago

ABC is a right angled at C. If p is the length of the perpendicular from C to AB and a.b,c are the length
of the sides opposite angle a ,angle b, angle c respectively, then prove that
Solve it quickly... ​

Attachments:

Answers

Answered by Anonymous
21

Solution :-

According to the given information draw a figure.

[ Refer the attachment ]

Given :-

→ Δ ABC is Right angled triangle.

→ ∠C = 90°

→ BC = a

→ AC = b

→ AB = c

→ Perpendicular CD = p is drawn from C to AB

To prove :-

1 / p² = ( 1 / a² ) + ( 1 / b² )

Proof :-

Finding ar( ΔABC ) when AB is considered as the the base

 ar( \triangle ABC) =  \dfrac{1}{2}  \times base \times height \\  \\  \\  \implies ar( \triangle ABC ) =  \dfrac{1}{2}  \times AB \times CD \\  \\  \\  \implies ar( \triangle ABC) =  \dfrac{1}{2} cp  \rightarrow eq(1)

Finding the area of the triangle when BC is considered as the base.

 ar( \triangle ABC) =  \dfrac{1}{2}  \times base \times height \\  \\  \\  \implies ar( \triangle ABC ) =  \dfrac{1}{2}  \times BC \times  AC  \\  \\  \\  \implies ar( \triangle ABC) =  \dfrac{1}{2} ab  \rightarrow eq(1)

 \text{From eq(1) and eq(2)} \\  \\  \\  \implies  \dfrac{1}{2} cp =  \dfrac{1}{2} ab \\  \\  \\  \implies cp =  \dfrac{1}{2}ab \times 2 \\  \\  \\  \implies cp = ab \\  \\  \\  \implies c =  \dfrac{ab}{p}  \rightarrow eq(3)

ΔABC is a right angled triangled triangle

By Pythagoras theorem

⇒ AB² = BC² + AB²

⇒ c² = a² + b²

 \implies   \bigg(\dfrac{ab}{p}  \bigg)^{2}  =  {a}^{2}  +  {b}^{2}  \qquad  \{ \because from \ eq(3) \} \\  \\  \\  \implies  \dfrac{ {(ab)}^{2} }{ {p}^{2} }  =  {a}^{2}  +  {b}^{2}  \\  \\  \\  \implies  \dfrac{ {a}^{2} {b}^{2}  }{ {p}^{2} }  =  {a}^{2}  +  {b}^{2} \\  \\  \\  \implies  \dfrac{1}{ {p}^{2} }   =  \dfrac{ {a}^{2}  +  {b}^{2} }{ {a}^{2}  {b}^{2} }  \\  \\  \\  \implies  \dfrac{1}{ {p}^{2} }  =  \dfrac{ {a}^{2} }{ {a}^{2} {b}^{2}  }  +  \dfrac{ {b}^{2} }{ {a}^{2}  {b}^{2} }  \\  \\

 \implies  \dfrac{1}{ {p}^{2} }  =  \dfrac{1}{ {b}^{2} }  +  \dfrac{1}{ {a}^{2} }  \\  \\  \\ \implies \dfrac{1}{ {p}^{2} }  =  \dfrac{1}{ {a}^{2} }  +  \dfrac{1}{ {b}^{2} }

Hence proved.

Attachments:
Answered by Anonymous
107

AnswEr :

Given :

[ Check the Given Attachment ]

To Proof :

 \star \:  \:  \sf\dfrac{1}{ {p}^{2} }  =  \dfrac{1}{ {a}^{2} }  +  \dfrac{1}{ {b}^{2} }

Prove :

In ∆ABC, there is two Right Angle.

  • First at ∠C.
  • Second at ∠E  \perp on AB.

Area of ∆ ABC considering BC as Base ;

 \longrightarrow \sf{Ar.  \: of \:  (\triangle ABC) =  \dfrac{1}{2} \times  Base \times  Height}

 \longrightarrow \sf{Ar.  \: of \:  (\triangle ABC) =  \dfrac{1}{2} \times  BC \times AC }

\longrightarrow \sf{Ar.  \: of \:  (\triangle ABC) =  \dfrac{1}{2} \times a \times b}

\longrightarrow \sf{Ar.  \: of \:  (\triangle ABC) =  \dfrac{ab}{2}}   \:  \:  \: \frac{ \:  \:  \:  \: }{} \frak{eq(1)}

Area of ∆ ABC considering AB as Base ;

\longrightarrow \sf{Ar.  \: of \:  (\triangle ABC) =  \dfrac{1}{2} \times  Base \times  Height}

 \longrightarrow \sf{Ar.  \: of \:  (\triangle ABC) =  \dfrac{1}{2} \times  AB \times CE}

\longrightarrow \sf{Ar.  \: of \:  (\triangle ABC) =  \dfrac{1}{2} \times c \times p}

\longrightarrow \sf{Ar.  \: of \:  (\triangle ABC) =  \dfrac{cp}{2}}  \:  \:  \: \frac{ \:  \:  \:  \: }{} \frak{eq(2)}

From eq(1) and eq(2), we get :

 \leadsto \sf{ \dfrac{ab}{ \cancel2}  =  \dfrac{cp}{ \cancel2} }

\leadsto \sf{ab = cp}

\leadsto \sf{c =  \dfrac{ab}{p} }

In ∆ ABC, By Pythagoras Theorem :

 \leadsto \sf{(AB)^{2}  =  {(BC)}^{2} +  {(AC)}^{2}  }

 \leadsto \sf{(c)^{2}  =  {(a)}^{2} +  {(b)}^{2}  }

 \leadsto \sf{ \bigg( \dfrac{ab}{p}  \bigg)^{2}  =  {(a)}^{2} +  {(b)}^{2}  }

 \leadsto \sf{ \dfrac{a^{2} {b}^{2}  }{p^{2} }  =  {a}^{2} +  {b}^{2}  }

 \leadsto \sf{ \dfrac{1  }{p^{2} }  =   \dfrac{{a}^{2} +  {b}^{2}}{a^{2} {b}^{2}}}

 \leadsto \sf{ \dfrac{1  }{p^{2} }  =   \dfrac{ \cancel{{a}^{2}}}{ \cancel{a^{2}} {b}^{2}}} +\dfrac{\cancel{{b}^{2}}}{a^{2} \cancel{{b}^{2}}}

\leadsto \sf{ \dfrac{1}{ {p}^{2} }  =  \dfrac{1}{ {b}^{2} } +  \dfrac{1}{ {a}^{2} }  }

 \boxed{\leadsto \large\sf{ \dfrac{1}{ {p}^{2} }  =  \dfrac{1}{ {a}^{2} } +  \dfrac{1}{ {b}^{2} }  }}

Attachments:
Similar questions