ABC is a right angled triangle at C prove that (1) tanAtanB=1 (2) sinAcosB+cosAsinB=1
Answers
Answered by
1
Answer:
Step-by-step explanation:
A+B+C = 180; ∠C = 90°
A+B = 180 - C = 180 - 90 = 90°.
1) Tan(A+B) = Tan90°
//But Tan(A+B) = TanA + TanB/ 1 - TanATanB
TanA + TanB / 1 - TanATanB = 1/0 (∵Tan90 = Sin90/Cos90 = 1/0)
1 - TanATanB = 0
=> TanATanB = 1.
Hence proved
2) Sin(A+B) = Sin90
//But Sin(A+B) = SinACosB + CosASinB
=> SinACosB + CosASinB = Sin90 = 1.
Hence proved
Similar questions