ABC is a right angled triangle with angle ACB = 90° , BC = 12 cm , AB = 15 cm and CD = 5 cm. Find the lengths of BD and AD.
plzz answer this ....
Attachments:
Answers
Answered by
19
ANSWERS
Log in to add comment
Answers
In Triangle BDC
BD²= BC²+CD²
BD² = 12² + 5²
BD² = 144 +25
BD² = 169
BD = 13cm
In Triangle ABC
AB²= AC² + BC²
15² = AC² + 12²
225 = AC² + 144
AC² = 225 - 144
AC² = 81
AC = 9
so,AC = AD + CD
9 = AD + 5
AD = 9-5
AD = 4
Hence,BD=13cm ; AD=4cm
Answered by
0
Step-by-step explanation:
Given:
In Right angle triangle BDC
(BD)
b * d ^ 2 = b * c ^ 2 + c * d ^ 2
b * d ^ 2 = 12 ^ 2 + 5 ^ 2 b * d ^ 2 = 144 + 25
b * d ^ 2 = 169
b * d ^ 2 = 13 ^ 2
sq cut from sq bd = 13
hence bd = 13
In right angle triangle BAD
b * a ^ 2 = b * d ^ 2 + a * d ^ 2 15 ^ 2 = 13 ^ 2 + a * d ^ 2
225 = 169 + a * d ^ 2 225 - 169 = a * d ^ 2
56 = a * d ^ 2
sqrt(56) = ad 2sqrt(14) * cm = ad
Attachments:
Similar questions