Math, asked by Anonymous, 1 year ago

ABC is a right triangle with angle B = 90°. A circle with BC as diameter meets hypotenuse AC at point D. Prove that :
(i) AC AD = (AB) ^2

(ii)(BD) ^2= AD x DC.

No spam..
Ans with diagram... ​

Answers

Answered by guruhydra292
4

Step-by-step explanation:

ΔABC is a right angled triangle.

∠ABC = 90°.

A circle is drawn with AB as diameter intersecting AC in P, PQ is the tangent to the circle which intersects BC at Q.

Join BP.

PQ and BQ are tangents drawn from an external point Q.

∴ PQ = BQ   -------------- (1)  (Length of tangents drawn from an external point to the circle are equal)

⇒ ∠PBQ = ∠BPQ    (In a triangle, angles opposit to equal sides are equal)

Given that, AB is the diameter of the circle.

∴ ∠APB = 90°  (Angle in a semi-circle is a right angle)

∠APB + ∠BPC = 180°   (Linear pair)

∴ ∠BPC = 180° – ∠APB = 180° – 90° = 90°

Consider ΔBPC,

∠BPC + ∠PBC + ∠PCB = 180°  (Angle sum property of a triangle)

∴ ∠PBC + ∠PCB = 180° – ∠BPC = 180° – 90° = 90°  ----------- (2)

∠BPC = 90°

∴ ∠BPQ + ∠CPQ = 90°    ...(3)

From equations (2) and (3), we get

∠PBC + ∠PCB = ∠BPQ + ∠CPQ

⇒ ∠PCQ = ∠CPQ  (Since, ∠BPQ = ∠PBQ)

Consider ΔPQC,

∠PCQ = ∠CPQ

∴ PQ = QC  ----------- (4)

From equations (1) and (4), we get

BQ = QC

Answered by Anonymous
15

Step-by-step explanation:

Step-by-step explanation:

ΔABC is a right angled triangle.

∠ABC = 90°.

A circle is drawn with AB as diameter intersecting AC in P, PQ is the tangent to the circle which intersects BC at Q.

Join BP.

PQ and BQ are tangents drawn from an external point Q.

∴ PQ = BQ   -------------- (1)  (Length of tangents drawn from an external point to the circle are equal)

⇒ ∠PBQ = ∠BPQ    (In a triangle, angles opposit to equal sides are equal)

Given that, AB is the diameter of the circle.

∴ ∠APB = 90°  (Angle in a semi-circle is a right angle)

∠APB + ∠BPC = 180°   (Linear pair)

∴ ∠BPC = 180° – ∠APB = 180° – 90° = 90°

Consider ΔBPC,

∠BPC + ∠PBC + ∠PCB = 180°  (Angle sum property of a triangle)

∴ ∠PBC + ∠PCB = 180° – ∠BPC = 180° – 90° = 90°  ----------- (2)

∠BPC = 90°

∴ ∠BPQ + ∠CPQ = 90°    ...(3)

From equations (2) and (3), we get

∠PBC + ∠PCB = ∠BPQ + ∠CPQ

⇒ ∠PCQ = ∠CPQ  (Since, ∠BPQ = ∠PBQ)

Consider ΔPQC,

∠PCQ = ∠CPQ

∴ PQ = QC  ----------- (4)

From equations (1) and (4), we get

BQ = QC

</p><p></p><p>&lt;svg class= "heart" viewBox= "-2 -2 98.6 90.81"&gt;</p><p></p><p>  &lt;title&gt;Corazon&lt;/title&gt;</p><p>  </p><p>  &lt;text x=8 y=22 dx= "0 0 0 0 0 0 0"  dy= "2 -8 -2  -1 1 2 4 "style= "font: bold .7em arial; fill: red;"&gt; silenť</p><p>   &lt;tspan x=60 y=22 style= "font: bold .7em arial; fill: blue;"&gt;silentkiller&lt;/tspan&gt;</p><p>   &lt;tspan x= 10 dy= 15 style= "font: bold .6em arial; fill: navy;"&gt; &lt;/tspan&gt;</p><p>   &lt;tspan x= 25 dy= 10 style= "font: bold .6em arial; fill: navy;"&gt;followme&lt;/tspan&gt;</p><p>   &lt;tspan x= 35 dy= 10 style= "font: bold .6em arial; fill: navy;"&gt;&lt;/tspan&gt;</p><p>   &lt;tspan x= 37 dy= 10 style= "font: bold .5em arial; fill: red;"&gt;...&lt;/tspan&gt;</p><p>   </p><p>   &lt;animate attributeType="XML" attributeName="visibility" from="visible" to="hidden" dur="9.2s" begin="0s" /&gt;</p><p>   </p><p>  &lt;/text&gt;</p><p>  </p><p>  &lt;path stroke= "firebrick" stroke-width= "3" d= "M86.81,8.15a27.79,27.79,0,0,1,0,39.33L47.48,86.81,8.15,47.48A27.81,27.81,0,0,1,47.48,8.15,27.79,27.79,0,0,1,86.81,8.15Z"/&gt;</p><p>  </p><p>&lt;/svg&gt;</p><p>&lt;style&gt;</p><p>body {</p><p>display: grid;</p><p>min-height: 100vh;</p><p>justify-content: center;</p><p>align-content: center;</p><p>background: repeating-linear-gradient(circle, white, yellow, red); </p><p>background: repeating-radial-gradient(circle, white, yellow, red);</p><p>}</p><p></p><p>.heart {</p><p>width: 250px;</p><p>animation: heart-beat .5s 4.85s infinite ease-in-out alternate;</p><p>}</p><p></p><p>@keyframes heart-beat {</p><p>  to{</p><p>   transform: scale(1.05);</p><p>  }</p><p>}</p><p></p><p>path {</p><p>fill: none;</p><p>stroke-dasharray: 286;</p><p>stroke-dashoffset: 286;</p><p>animation: heart-path 5s forwards;</p><p>.ocultarText: color:transparent ;</p><p>}</p><p></p><p>@keyframes heart-path {</p><p>99% {</p><p>   stroke-dashoffset: 0;</p><p>   fill: none;</p><p>}</p><p>100% {</p><p>   fill: firebrick;</p><p>}</p><p>}</p><p></p><p>&lt;/style&gt;</p><p></p><p>

Similar questions