ABC is a triangle….right angled at B.If AB=20cm.and BC= 21cm, find AC?
Answers
Answered by
0
Step-by-step explanation:
Answer:
6 units
Step-by-step explanation:
Given,
The sides of the triangle ABC,
AB =20cm , BC=21cm, AC =29cm,
Thus, the semi perimeter of the triangle ABC,
s=\frac{1}{2}(AB+BC + AC)=\frac{1}{2}(20+21+29)=\frac{1}{2}(70)=35s=
2
1
(AB+BC+AC)=
2
1
(20+21+29)=
2
1
(70)=35
So, by the heron's formula,
The area of the triangle,
A=\sqrt{s(s-AB)(s-BC)(s-AC)}A=
s(s−AB)(s−BC)(s−AC)
=\sqrt{35(35-20)(35-21)(35-29)}=
35(35−20)(35−21)(35−29)
=\sqrt{35(15)(14)(6)}=
35(15)(14)(6)
= 210 square unit,
Hence, the radius of the circle touching all the sides of triangle ABC,
R=\frac{A}{s}=\frac{210}{35}=6\text{ unit}R=
s
A
=
35
210
=6 unit
Answered by
0
ANSWER :- 29CM
SOLUTION:-
(AC)²=(AB)²+(BC)²
(AC)²=(20)²+(21)²
(AC)²=400+441
(AC)²=841
AC=√841
AC=√29×29
AC=29 CM
HENCE,THE ANSWER IS 29 CM.
Similar questions