Math, asked by kirito8, 6 months ago

ABC is an equilateral triangle. AP and BQ are it's altitudes. find the radius of its circumcircle




no measurements given


don't give stup.id answers pls ​

Attachments:

Answers

Answered by bhattak9617
3

Answer:

r =   \frac{9a {}^{2} + 4 }{24} \\

Step-by-step explanation:

ABC is equilateral triangle..

AB = BC = CA = a (let)

BP =  \frac{a}{2}  \\

In   \:  \: triangle,  \: APB  \\  {AB}^{2}  =  {AP}^{2}  +  {BP }^{2}  \\  {a}^{2} =AP {}^{2}   + ( \frac{a}{2} ) {}^{2}  \\  {a}^{2} =AP {}^{2}   + \frac{a {}^{2} }{4}  \\ {a}^{2} = \frac{ 4AP {}^{2}}{4} + \frac{a {}^{2} }{4} \\ {a}^{2} =   \frac{ 4AP {}^{2}  + a {}^{2} }{4} \\ 4 {a}^{2}  - a {}^{2}  = 4AP \\ 3a {}^{2}  = 4AP \\  \frac{3}{4} a {}^{2}  = AP

AO = BO = r (let)

OP = AP - OA

OP =  \frac{3}{4} a {}^{2} - r \\

In  \:  \: triangle ,  \: BOP  \\ \\  OB {}^{2}  = BP {}^{2}  + OP {}^{2}  \\  \\ r {}^{2}  =   (\frac{a}{2} ) {}^{2}  + ( \frac{3}{4} a {}^{2}  - r) {}^{2}  \\ \\  r {}^{2}  =  \frac{a {}^{2} }{4}  +  \frac{9}{16} a {}^{4}  + r {}^{2}  -  \frac{3}{2} a {}^{2} r \\  \\ 0 = \frac{a {}^{2} }{4}  +  \frac{9}{16} a {}^{4}    -  \frac{3}{2} a {}^{2}r \\  \\ 0 =  \frac{4a {}^{2} + 9a {}^{4}   -24a {}^{2} r }{16}  \\  \\ 0 = 4a {}^{2} + 9a {}^{4}   -24a {}^{2} r  \\  \\ 24a {}^{2} r - 4a {}^{2}  = 9a {}^{4}  \\  \\ 4a {}^{2} (6r - 1) = 9a {}^{4}  \\  \\ 6r - 1 =  \frac{9a2}{4}  \\  \\ 6r = \frac{9a2}{4} + 1 \\  \\ r =  \frac{9a {}^{2} + 4 }{4 \times 6}  \\  \\ r =   \frac{9a {}^{2} + 4 }{24}

Similar questions