Math, asked by kutnurd, 16 days ago

ABC is an isosceles triangle such that A(-3,0) B(3,0) and AC=BC=5. Then the coordinates of C could be ​

Answers

Answered by Syamkumarr
0

Answer:

the coordinates of C(0, 4)

Step-by-step explanation:

Given that ΔABC is an isosceles

coordinates of triangle = A(-3, 0)  B(3, 0)

and AC = BC = 5

We need to find coordinates of C

let  (a, b) be the coordinates of C

from data AC = BC =5

here AC is distance between A(-3, 0) and C(a, b) = 5

        BC is distance between B(3, 0) and C(a, b) = 5

now we will find out AC and BC with C(a, b)

the distance between points (x₁, y₁) (x₂, y₂) = \sqrt{(x_{2}- x_{1})^{2}  +(y_{2} -y_{1} )^{2}    }  

distance between A(-3,0) and (a, b)

\sqrt{(a-(-3))^{2} + (b-0)^{2} } =5

\sqrt{(a+3)^{2} + b^{2} } = 5  

(\sqrt{a^{2} +9+6a+b^{2} )} = 5       [squaring on both sides ]

a^{2} +b^{2}+6a+9  =25

a^{2} +b^{2} +6a =16_ (1)

distance between B(3, 0) and C(a, b)

\sqrt{(a-3)^{2} +(b-0)^{2} } =5

\sqrt{a^{2}+9-6a+b^{2}  } =5  

\sqrt{a^{2}+b^{2} -6a+9  } =5        

(\sqrt{a^{2}+b^{2} -6a +9  } )^{2} = 5^{2}          [squaring on both sides ]

⇒  a^{2} +b^{2} -6a+9 =25

a^{2} +b^{2} -6a =16 _(2)

do (1) -(2) ⇒  a^{2} +b^{2} +6a -(a^{2} +b^{2} -6a ) = 16 -16

               ⇒ a^{2} +b^{2} +6a - a^{2}-b^{2} +6a =0

               ⇒ 12a =0

               ⇒ a=0

a =0 substitute in (1) ⇒ (0)^{2}+b^{2}+6(0) =16

                                  ⇒ b^{2} =16

                                  ⇒ b=4

the coordinates  C(a, b) = (0, 4)  

Similar questions