ABC is an isosceles triangle whose <C is a right angle. if D is any point on A, prove that AD²+DB² = 2CD²
awesomeme10917:
hiiii
Answers
Answered by
4
Hope it helps
Thank you
Attachments:
Answered by
20
Figure in attachment .
[ Point D is on AB ]
Let AC = BC = x .
In Δ ADC and Δ BDC ,
DC = DC [ Common ]
AC = BC [ Given isosceles ]
∠ADC = ∠BDC [ 90° each ]
Δ ADC ≅ Δ BDC [ R.H.S ]
AD = DB [ c.p.c.t ]
AD² + DB² = AD² + AD²
⇒ 2 AD²
⇒ 2 ( AB/2 )²
⇒ 2 ( AB²/4 )
⇒ AB²/2
Now AB² = AC² + BC²
⇒ AB² = a² + a² ⇒ 2 a²
Then AD² = ( AB/2 )² = AB²/4
⇒ 2 a²/4
⇒ a²/2
AB² = 2 a² / 2
⇒ AD² + DB² = a²
2 CD² = 2 (AC² - AD²)
2 CD² = 2 (a² - a²/2)
⇒ 2 CD² = 2 a²/2
⇒ 2 CD² = a²
Hence AD² + DB² = 2 CD² = a² [ Proved ]
Attachments:
Similar questions