Math, asked by punisha4148, 11 months ago

Abc is triangle if sin (a+b/ 2) =3/2, then the value of sin c/2 is

Answers

Answered by himanshu112449
1

we know that the sum of angle = 180

A+ B + C = 180

A+B= 180-C

 \sin( \frac{a + b}{2} )  =  \frac{3}{2}  \\  \sin( \frac{180 - c}{2} )  =  \frac{3}{2}  \\  \sin(  \frac{180}{2}   -  \frac{c}{2} )  =  \frac{3}{2}  \\  \sin(90 -  \frac{c}{2} )  =  \frac{3}{2}  \\  \cos( \frac{c}{2} ) =  \frac{3}{2}   =  \frac{b}{h}

second

 { \sin }^{2}  (\frac{c}{2})  +  { \cos }^{2}   (\frac{c}{2} )= 1 \\  { \sin }^{2}  (\frac{c}{2} ) +  { (\frac{3}{2}) }^{2}  = 1 \\  { \sin }^{2}  \frac{c}{2}  = 1 -  \frac{9}{4}   \\  =  \frac{4 - 9}{4 }  \\  =   \frac{ - 5}{4}

answer

Answered by TanikaWaddle
0

\sin\left (\frac{C}{2}  \right )= \sqrt{\frac{5}{4}}

Step-by-step explanation:

if ABC is a triangle

then sum of all the angles of the triangle = 180 degree

(by angle sum property )

i.e

\angle  A +\angle  B+ \angle  C = 180 ^\circ

then  \angle A + \angle B = 180 - \angle C

Now,

\sin \left ( \frac{a+b}{2} \right ) = \frac{3}{2}\\\\\sin \left ( \frac{180-C}{2} \right )= \frac{3}{2}\\\\\sin\left ( \frac{180}{2}- \frac{C}{2} \right )= \frac{3}{2}\\\\\sin\left ( 90- \frac{C}{2} \right )= \frac{3}{2}\\\\sin (90-\theta )= \cos\theta \\\\\cos (\frac{C}{2})= \frac{3}{2}\\\\then \\\\\sin^2\theta + \cos^2\theta =1 \\\\\sin^2\left (\frac{C}{2}  \right )+ \cos^2\left ( \frac{C}{2}  \right )= 1\\\\\sin^2\left (\frac{C}{2}  \right )= 1- \left ( \frac{3}{2} \right )^2

\sin\left (\frac{C}{2}  \right )= \sqrt{\frac{5}{4}}

#Learn more :

https://brainly.in/question/10285593

Similar questions