ABC right angled at B AB = 5cm and ACB = 30 Determine the lengths of the side BC and AC
Answers
Answered by
25
Answer:-
━━━━━━━━━━━━━━━
━━━━━━━━━━━━━━━
Answered by
14
Answer:-
\large\sf{\frac{AB}{BC}=tanC}
BC
AB
=tanC
\large\sf{i.e.,\:\frac{5}{BC}=tan30°=\frac{1}{√3}}i.e.,
BC
5
=tan30°=
√3
1
\large\sf{which\:gives\:5√3cm}whichgives5√3cm
━━━━━━━━━━━━━━━
\small\sf{to\:find\:the\:length\:of\:the\:side\:AC,}tofindthelengthofthesideAC,
\large\sf{we\:consider,}weconsider,
\longrightarrow⟶ \large\sf{sin30°=\frac{AB}{AC}}sin30°=
AC
AB
\longrightarrow⟶ \large\sf{\frac{1}{2}=\frac{5}{AC}}
2
1
=
AC
5
\longrightarrow⟶ \large\sf{AC=10cm}AC=10cm
━━━━━━━━━━━━━━━
\large\sf{By\:using\:Pythagoras\:theorem,}ByusingPythagorastheorem,
\longrightarrow⟶ \large\sf{AC=√{AB}^{2}+{BC}^{2}}AC=√AB
2
+BC
2
\longrightarrow⟶ \large\sf{√{5}^{2}+{(5√3)}^{2}}√5
2
+(5√3)
2
\longrightarrow⟶ \large\sf{10cm}10cm
Similar questions