ABCD is a parallelogram, AD is produced to E so that DE =DC and EC produced in F. Prove that BF = BC
Answers
Answered by
21
Hello... ☺
ɢɪᴠᴇɴ: ᴀʙᴄᴅ ɪs ᴀ ᴘᴀʀᴀʟʟᴇʟᴏɢʀᴀᴍ.
ᴀᴅ ɪs ᴘʀᴏᴅᴜᴄᴇᴅ ᴛᴏ ᴇ sᴜᴄʜ ᴛʜᴀᴛ ᴅᴇ = ᴅᴄ.
ᴇᴄ ɪs ᴘʀᴏᴅᴜᴄᴇᴅ ᴛᴏ ɪɴᴛᴇʀsᴇᴄᴛ ᴀʙ ᴘʀᴏᴅᴜᴄᴇᴅ ɪɴ ғ.
ᴛᴏ ᴘʀᴏᴠᴇ: ʙғ = ʙᴄ
ᴘʀᴏᴏғ:
ɪɴ Δᴅᴄᴇ,
ᴅᴇ = ᴅᴄ (ɢɪᴠᴇɴ)
∴ ∠ᴅᴄᴇ = ∠ᴅᴇᴄ ...(1)
(ɪɴ ᴀ ᴛʀɪᴀɴɢʟᴇ, ᴇǫᴜᴀʟ sɪᴅᴇs ʜᴀᴠᴇ ᴇǫᴜᴀʟ ᴀɴɢʟᴇs ᴏᴘᴘᴏsɪᴛᴇ ᴛᴏ ᴛʜᴇᴍ)
ᴀʙ || ᴄᴅ
(ᴏᴘᴘᴏsɪᴛᴇ sɪᴅᴇs ᴏғ ᴛʜᴇ ᴘᴀʀᴀʟʟᴇʟᴏɢʀᴀᴍ ᴀʀᴇ ᴘᴀʀᴀʟʟᴇʟ)
∴ ᴀғ || ᴄᴅ
(ᴀʙ ʟɪᴇs ᴏɴ ᴀғ)
ᴀғ || ᴄᴅ ᴀɴᴅ ᴇғ ɪs ᴛʜᴇ ᴛʀᴀɴsᴠᴇʀsᴀʟ,
∴ ∠ᴅᴄᴇ = ∠ʙғᴄ ... (2)
(ᴘᴀɪʀ ᴏғ ᴄᴏʀʀᴇsᴘᴏɴᴅɪɴɢ ᴀɴɢʟᴇs)
ғʀᴏᴍ (1) ᴀɴᴅ (2)
∠ᴅᴇᴄ = ∠ʙғᴄ
ɪɴ Δᴀғᴇ,
∠ᴀғᴇ = ∠ᴀᴇғ (∠ᴅᴇᴄ = ∠ʙғᴄ)
∴ ᴀᴇ = ᴀғ
(ɪɴ ᴀ ᴛʀɪᴀɴɢʟᴇ, ᴇǫᴜᴀʟ ᴀɴɢʟᴇs ʜᴀᴠᴇ ᴇǫᴜᴀʟ sɪᴅᴇs ᴏᴘᴘᴏsɪᴛᴇ ᴛᴏ ᴛʜᴇᴍ)
⇒ ᴀᴅ + ᴅᴇ = ᴀʙ + ʙғ
⇒ ʙᴄ + ᴀʙ = ᴀʙ + ʙғ
(ᴀᴅ = ʙᴄ, ᴅᴇ = ᴄᴅ ᴀɴᴅ
ᴄᴅ = ᴀʙ ⇒ ᴀʙ = ᴅᴇ)
⇒ ʙᴄ = ʙғ
thank you ♥
ɢɪᴠᴇɴ: ᴀʙᴄᴅ ɪs ᴀ ᴘᴀʀᴀʟʟᴇʟᴏɢʀᴀᴍ.
ᴀᴅ ɪs ᴘʀᴏᴅᴜᴄᴇᴅ ᴛᴏ ᴇ sᴜᴄʜ ᴛʜᴀᴛ ᴅᴇ = ᴅᴄ.
ᴇᴄ ɪs ᴘʀᴏᴅᴜᴄᴇᴅ ᴛᴏ ɪɴᴛᴇʀsᴇᴄᴛ ᴀʙ ᴘʀᴏᴅᴜᴄᴇᴅ ɪɴ ғ.
ᴛᴏ ᴘʀᴏᴠᴇ: ʙғ = ʙᴄ
ᴘʀᴏᴏғ:
ɪɴ Δᴅᴄᴇ,
ᴅᴇ = ᴅᴄ (ɢɪᴠᴇɴ)
∴ ∠ᴅᴄᴇ = ∠ᴅᴇᴄ ...(1)
(ɪɴ ᴀ ᴛʀɪᴀɴɢʟᴇ, ᴇǫᴜᴀʟ sɪᴅᴇs ʜᴀᴠᴇ ᴇǫᴜᴀʟ ᴀɴɢʟᴇs ᴏᴘᴘᴏsɪᴛᴇ ᴛᴏ ᴛʜᴇᴍ)
ᴀʙ || ᴄᴅ
(ᴏᴘᴘᴏsɪᴛᴇ sɪᴅᴇs ᴏғ ᴛʜᴇ ᴘᴀʀᴀʟʟᴇʟᴏɢʀᴀᴍ ᴀʀᴇ ᴘᴀʀᴀʟʟᴇʟ)
∴ ᴀғ || ᴄᴅ
(ᴀʙ ʟɪᴇs ᴏɴ ᴀғ)
ᴀғ || ᴄᴅ ᴀɴᴅ ᴇғ ɪs ᴛʜᴇ ᴛʀᴀɴsᴠᴇʀsᴀʟ,
∴ ∠ᴅᴄᴇ = ∠ʙғᴄ ... (2)
(ᴘᴀɪʀ ᴏғ ᴄᴏʀʀᴇsᴘᴏɴᴅɪɴɢ ᴀɴɢʟᴇs)
ғʀᴏᴍ (1) ᴀɴᴅ (2)
∠ᴅᴇᴄ = ∠ʙғᴄ
ɪɴ Δᴀғᴇ,
∠ᴀғᴇ = ∠ᴀᴇғ (∠ᴅᴇᴄ = ∠ʙғᴄ)
∴ ᴀᴇ = ᴀғ
(ɪɴ ᴀ ᴛʀɪᴀɴɢʟᴇ, ᴇǫᴜᴀʟ ᴀɴɢʟᴇs ʜᴀᴠᴇ ᴇǫᴜᴀʟ sɪᴅᴇs ᴏᴘᴘᴏsɪᴛᴇ ᴛᴏ ᴛʜᴇᴍ)
⇒ ᴀᴅ + ᴅᴇ = ᴀʙ + ʙғ
⇒ ʙᴄ + ᴀʙ = ᴀʙ + ʙғ
(ᴀᴅ = ʙᴄ, ᴅᴇ = ᴄᴅ ᴀɴᴅ
ᴄᴅ = ᴀʙ ⇒ ᴀʙ = ᴅᴇ)
⇒ ʙᴄ = ʙғ
thank you ♥
Attachments:
Answered by
3
ANSWER↓
R.E.F image
Given : ABCD is A parallelogram
To Prove : BF=BC
Proof : In △DCE,DE=DC (given)
∴∠DCE=∠DEC...(1)
(Equal sides have equal is opposite to them)
since,
AB∥CD,∠DCE=∠BFC...(2) (pair of corresponding ∠S)
Form (1) and (2)
∠DEC=∠BFC
In △AEF,∠AEF=∠AFE
∴AF=AE,
⇒AB+BF=AD+DE
⇒BF=AD [∵AB=CD=DE]
⇒BF=BC [∵AD=BC] Hence proved.
Similar questions