Math, asked by legend200079, 4 months ago

ABCD is a parallelogram and AP and CQ are perpendiculars
from vertices A and C to diagonal BD.
If CQ = 4cm, BC= 5cm,PQ= 5cm, then BD will be


tell me the ans pls​

Attachments:

Answers

Answered by colourfulskycolourfu
2

Answer:

In △APB and △CQD,

∠APB=∠CQD (Each 90 degree)

AB=CD (Opposite sides of parallelogram ABCD)

∠ABP=∠CDQ (Alternate interior angles for AB∥CD)

∴△APB≅△CQD (By AAS congruency)

∴AP=CQ by CPCT

Hence proved.

Hope it's help ☺️

Answered by Anonymous
71

━━━━━━━━━━━━━━━━━━━━

\sf\underbrace{Correct\: Question: }

  • ABCD is a parallelogram and AP and CQ are perpendiculars From Vertices A and C on diagonal BD show that△APB ≈ △CQD.

\sf\underline\red{Given: }

  • ABCD is parallelogram with AP ⊥ BD & CQ ⊥ BD

\sf\underline\purple{To\:prove:}

  • △APB ≈ △CQD

\sf\underline\orange{Solution:}

Now,

\\

  • ⟹\sf{AB\: || \:DC \:and\: transversal \:BD.}

\\

  • \sf{⟹\:∠ABP\: = \:∠CDQ,\: (Alternate\: Angles)...(1)}

\\

  • ⟹\sf{In\:△APB \:and\: △CQD,}

\\

  • ⟹\sf{∠APB \:= \:∠CQD}

\\

  • ⟹\sf{∠ABP\: = \:∠CDQ}

\\

  • ⟹\sf{AB\: = \:CD}

\\

\large{ \underline{ \boxed{ \textsf{∴\: △APB\: ≈ \:∠CQD}}}}

━━━━━━━━━━━━━━━━━━━━

Attachments:
Similar questions