Math, asked by suma18, 1 year ago

ABCD is a parallelogram and O is a point in its interior then show that ar(triangle AOB ) +ar(triangle COD) = ar ( triangle AOD) + ar(triangle BOC)

Answers

Answered by KarthikM
16
Here is the solution.
Attachments:
Answered by JackelineCasarez
0

ar(Δ AOB) + ar(ΔCOD) = ar(ΔAOD) + ar(ΔBOC)

Step-by-step explanation:

Given,

ABCD is a ║gm with center O where,

EF║AB, EF║DC, MN║AD, & MN║BC

In Δ AOB & ║gm ABEF,

AB = common base          (since AB ║ EF)

∵ ar(Δ AOB) = 1/2 ar(║gm ABEF)         ...(i)

In ΔDOC & ║gm EFCD,

DC = common base          (since DC ║ EF)

∵ ar(Δ DOC) = 1/2 ar(║gm EFCD)       ...(ii)

by adding (i) & (ii),

ar(Δ AOB) + ar(Δ DOC) = 1/2ar(║gm ABEF) + 1/2 ar(║gm EFCD)

= ar(Δ AOB) + ar(Δ COD) = 1/2 ar(║gm ABCD) ...(iii)

Since,

ar(Δ AOD) + ar(Δ BOC) = 1/2 ar(║gm ABCD) ...(iv)

From (iii) & (iv), we get;

ar(Δ AOB) + ar(ΔCOD) = ar(ΔAOD) + ar(ΔBOC)

Learn more: Parallelogram

brainly.in/question/7830788

Similar questions