Math, asked by nathankrishaditya, 11 months ago

ABCD is a parallelogram.AP,BP,RD and RC are the angle bisectors of angles a,b,c and d respectively.Prove that PQRS is a parallelogram.
Pls answer it quickly it’s urgent

Answers

Answered by Anonymous
102

Correct Question -

ABCD is a parallelogram.AP,BP,RD and RC are the angle bisectors of angles A, B, C and D respectively.Prove that PQRS is a rectangle.

(As, bisectors of parallelogram forms rectangle)

Solution -

Given:

  • ABCD is a parallelogram.
  • AP, BP, RD and RC are the bisectors of \sf{\angle{A}},\sf{\angle{B}}, \sf{\angle{C}} and \sf{\angle{D}}

To Prove:

  • PQRS is a rectangle.

Proof:

[ Refer the attachment for figure ]

As, we know that opposite sides of parallelogram are parallel. Then,

\implies\:\sf{AB\:||\:DC}

And AD is transversal on parallel lines AB and DC. Then,

\implies\:\sf{\angle{A}\:+\:\angle{D}\:=\:180^{\circ}}

Half of sum of \sf{\angle{A}} and \sf{\angle{D}} is equal to 90°

i.e.

\implies\:\sf{\frac{1}{2}\angle{A}\:+\:\frac{1}{2}\angle{D}\:=\:\frac{1}{2}180^{\circ}}

\implies\:\sf{\frac{1}{2}\angle{A}\:+\:\frac{1}{2}\angle{D}\:=\:90^{\circ}} ...(1)

Means, \sf{\angle{DAS}\:+\:\angle{ADS}\:=\:90^{\circ}} ...(2)

In ∆ADS

\sf{\angle{A}\:+\:\angle{D}\:+\:\angle{S}\:=\:180^{\circ}}

\sf{90^{\circ}\:+\:\angle{S}\:=\:180^{\circ}} [From (1)]

\sf{\angle{S}\:=\:90^{\circ}}

(\sf{\angle{DSA}} = 90°)

Now, AP and DR intersect each other at point S.

\implies\:\sf{\angle{PSR}\:=\:\angle{DSA}}

\implies\:\sf{PSR\:=\:90^{\circ}}

Similarly, \sf{\angle{SRQ}}, \sf{\angle{RQP}} and \sf{\angle{QPS}} = 90°

\implies\:\sf{\angle{PSR}\:=\:\angle{PQR}}

Also,

\implies\:\sf{\angle{SRQ}\:=\:\angle{QPS}}

From above calculations we have -

\sf{\angle{PSR}} = \sf{\angle{SRQ}} = \sf{\angle{RQP}} = \sf{\angle{QPS}} = 90°

Opposite angles of PQRS are equal means PQRS is a parallelogram. But one of the angle is 90° means PQRS is a rectangle.

Attachments:
Answered by TheStormWrecker
29

\huge\tt\blue{Answer}

\tt\red{Given}

____________________________________________

1) ABCD is a parallelogram.

2) AP,BP,RD and RC are the angle bisectors of angles a,b,c and d respectively.

3) Prove that PQRS is a parallelogram.

____________________________________________

\tt\red{→AB || DC}

\tt\red{→∠A + ∠D = 180°}

\tt\red{→∠A,  ∠D = 90°}

____________________________________________

\tt\green{→ \frac{1}{2} \:  ∠A  \: +  \:  \frac{1}{2} \:  ∠D \:  =  \:  \frac{1}{2}  \: 180°}

\tt\green{→∠A \:  +   \: \frac{1}{2} \:   \: ∠D \:  =  \: 90° \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - (1)}

\tt\green{→∠DAS  \: +  \: ∠ADS  \: = \:  90°  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - (2)}

___________________________________________

∆ ADS

\tt\red{→∠A + ∠D + ∠S = 180°}

\tt\red{→90° + ∠S = 180°  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - (1)}

\tt\red{→∠S = 90°}

\tt\red{→∠SA = 90°}

\tt\red{→∠PSR = ∠DSA}

\tt\blue{→ ∠PSR = 90°}

____________________________________________

\tt\blue{→∠SRQ,  ∠RQP, ∠QPS = 90°}

\tt\blue{→∠PSR = ∠PQR }

\tt\blue{→∠SRQ = ∠QPS}

____________________________________________

\tt\green{→∠PSR = ∠SRQ = ∠RQP = ∠QPS = 90°}

As, opposite sides are equal and one angle is 90° , so it's a rectangle.

\huge\tt\red{Hence \:Proved}

Attachments:
Similar questions