ABCD is a parallelogram.If BC=CQ,prove that Ar(BCP)=1/2 area(bcd)
Answers
Answered by
4
Given : ABCD is a parallelogram.
BC=CQ.
To prove :
ar(ΔBCP)=ar(ΔDPQ)
Construction :
Join AC
Proof :
ar(ΔBPC) = ar (ΔAPC) [Triangles on the same base and between same parallels ]
Similarly ,
ar(ΔADC) = ar(ΔADQ) [Triangles on the same base and between same parallels ]
ar(ΔADC) = ar(ΔADP) +ar(ΔAPC)
ar(ΔADQ) = ar(ΔADP) + ar(ΔDPQ)
ar(ΔADC) = ar(ΔADQ) and ,
ar(ΔADP) is common.
∴ ar(ΔAPC) = ar(ΔDPQ)
But ,
ar(ΔAPC) = ar(ΔBPC)
∴ ar(ΔBPC) = ar(ΔDPQ)
Hence ,proved.
PLease mark brainliest ❤️
have a good day
Answered by
0
Where is the figure?
Similar questions
English,
5 months ago
India Languages,
5 months ago
Math,
11 months ago
Math,
1 year ago
Biology,
1 year ago