ABCD is a parallelogram.If BC=CQ,prove that Ar(BCP)=Ar(DPQ)
Attachments:

Answers
Answered by
188
Given : ABCD is a parallelogram.
BC=CQ.
To prove :
ar(ΔBCP)=ar(ΔDPQ)
Construction :
Join AC
Proof :
ar(ΔBPC) = ar (ΔAPC) [Triangles on the same base and between same parallels ]
Similarly ,
ar(ΔADC) = ar(ΔADQ) [Triangles on the same base and between same parallels ]
ar(ΔADC) = ar(ΔADP) +ar(ΔAPC)
ar(ΔADQ) = ar(ΔADP) + ar(ΔDPQ)
ar(ΔADC) = ar(ΔADQ) and ,
ar(ΔADP) is common.
∴ ar(ΔAPC) = ar(ΔDPQ)
But ,
ar(ΔAPC) = ar(ΔBPC)
∴ ar(ΔBPC) = ar(ΔDPQ)
Hence ,proved.
PLease mark brainliest ....
BC=CQ.
To prove :
ar(ΔBCP)=ar(ΔDPQ)
Construction :
Join AC
Proof :
ar(ΔBPC) = ar (ΔAPC) [Triangles on the same base and between same parallels ]
Similarly ,
ar(ΔADC) = ar(ΔADQ) [Triangles on the same base and between same parallels ]
ar(ΔADC) = ar(ΔADP) +ar(ΔAPC)
ar(ΔADQ) = ar(ΔADP) + ar(ΔDPQ)
ar(ΔADC) = ar(ΔADQ) and ,
ar(ΔADP) is common.
∴ ar(ΔAPC) = ar(ΔDPQ)
But ,
ar(ΔAPC) = ar(ΔBPC)
∴ ar(ΔBPC) = ar(ΔDPQ)
Hence ,proved.
PLease mark brainliest ....
Attachments:

Answered by
36
I hope it will help you
Attachments:

Similar questions
Math,
9 months ago
Math,
9 months ago
History,
1 year ago
Social Sciences,
1 year ago
English,
1 year ago