Math, asked by navyasingh13, 1 year ago

ABCD is a parallelogram. 'O' is an interior point. If ar (AOB) + ar (DOC) = 43 sq units, then find ar (parallelogram ABCD).

Answers

Answered by amirgraveiens
2

Ar(parallelogram ABCD) = 86 sq units.

Step-by-step explanation:

Given:

ABCD is a parallelogram and O is an interior point.

And.  ar (AOB) + ar (DOC) = 43 sq units

Construction: Draw EF and GH through O parallel to AB and AD respectively,

To find:

ar (parallelogram ABCD) = ?

Solution:

In parallelogram FOGA, OA is a diagonal. So,

ar (AOG) = ar (AOF)                 [1]

In Parallelogram BGOE, OB is a diagonal. So,

ar (AOG) = ar (EOB)                 [2]

In Parallelogram GHOF, OD is a diagonal. So,

ar (DOH) = ar (DOF)                 [3]

In Parallelogram HCEO, OC is a diagonal. So,

ar (COH) = ar (COE)                 [4]

Adding equation (1), (2), (3) and (4), we get,

ar (AOG)+ar (AOG)+ar (DOH)+ar (COH) =  ar (AOF)+ar (EOB)+ar (DOF)+ar (COE)

⇒  [ar (AOG)+ar (AOG)] + [ar (DOH)+ar (COH)] = [ ar (AOF)+ar (DOF)] + [ar (EOB)+ar (COE)]

⇒ ar (AOB)+ar (COD) = ar (AOD)+ar (BOC)            [shown in the figure]   [5]

Now,  

Ar(║ABCD) = ar (AOB)+ar (COD) + ar (AOD)+ar (BOC)

                    = ar (AOB)+ar (COD) + ar (AOB)+ar (COD)    [from 5]

                    = 2 [ar (AOB)+ar (COD)]

                    = 2 (43)                          [given]

                    = 86 sq units.

Ar(parallelogram ABCD) is 86 sq units.

Attachments:
Similar questions