Abcd is a parellogram and AE and CF bisect angle A and Angle C. prove that AE||FC.
Answers
14.
∫ A sin (ωt) dt = (A/ω) ∫ sin (ωt) d(ωt)
∫ A sin (ωt) dt = - (A/ω) cos (ωt)
Applying limit for t from 0 to t,
∫ A sin (ωt) dt = - (A/ω) [cos (ωt) - cos (ω*0)]
∫ A sin (ωt) dt = - (A/ω) [cos (ωt) - 1]
15.
v dv = - ω² x dx
∫ v dv = - ω² ∫ x dx
Integral is done for velocity from v0 to v.
Integral is done for displacement from 0 to x.
Therefore,
[v² - (v0)²] / 2 = - ω² [x² - 0²] / 2
v² = (v0)² - ω²x²
16.
dq = e^(-t / τ) dt
q = ∫ e^(-t / τ) dt
q = - τ ∫ e^(-t / τ) d(-t / τ)
q = - τ e^(-t / τ)
Applying limit for t from 0 to τ,
q = - τ [e^(-τ / τ) - e^(-0 / τ)]
q = τ (1 - 1/e)
Answer:
∫ A sin (ωt) dt = (A/ω) ∫ sin (ωt) d(ωt)
∫ A sin (ωt) dt = - (A/ω) cos (ωt)
Applying limit for t from 0 to t,
∫ A sin (ωt) dt = - (A/ω) [cos (ωt) - cos (ω*0)]
∫ A sin (ωt) dt = - (A/ω) [cos (ωt) - 1]
15.
v dv = - ω² x dx
∫ v dv = - ω² ∫ x dx
Integral is done for velocity from v0 to v.
Integral is done for displacement from 0 to x.
Therefore,
[v² - (v0)²] / 2 = - ω² [x² - 0²] / 2
v² = (v0)² - ω²x²
16.
dq = e^(-t / τ) dt
q = ∫ e^(-t / τ) dt
q = - τ ∫ e^(-t / τ) d(-t / τ)
q = - τ e^(-t / τ)
Applying limit for t from 0 to τ,
q = - τ [e^(-τ / τ) - e^(-0 / τ)]
q = τ (1 - 1/e)