Math, asked by Anonymous, 4 months ago

ABCD is a pentagon . AX , BC and ED are perpendicular to CD find the area of pentagon​

Answers

Answered by Anonymous
0

\sf {\orange{\underline{\purple{\underline{Given\:that:}}}}}

  • ABCD is a pentagon.
  • AX, BC and ED are perpendicular to CD.

 \sf {\orange {\underline {\pink{\underline{To\:find:}}}}}

  • The area of the Pentagon.

 \sf {\pink {\underline {\blue{\underline{Solution:}}}}}

  • The Solution can be found out by two different methods and they are as followed:

\sf\underline\red{METHOD 1}

  • First divide the given pentagon into two trapeziums AXCB and AXDE.

→Area of trapezium ABCX\rm{=}\dfrac{1}{2}\times{4.5}\times{(22+6)cm}^{2}

\rm{=}\dfrac{1}{2}\times{4.5}\times{28cm}^{2}

\rm{=63cm}^{2}

→Area of trapezium AXDE\rm{=}\dfrac{1}{2}\times{5.5}\times{(22+6)cm}^{2}

\rm{=}\dfrac{1}{2}\times{5.5}\times{28cm}^{2}

\rm{=77cm}^{2}

Thus ,the area of Pentagon ABCDE \rm{=(63+77)cm}^{2}{=140cm}^{2}

\sf\underline\red{METHOD~2}

In this method ,first divide the Pentagon into triangle and name it as ABE and a rectangle and name it BCDE

→Area if triangle ABE\rm{=}\dfrac{1}{2}\times{10×16}{cm}^{2}

\rm{=80cm}^{2}

→Area if rectangle BCDE\rm{=(10×6)cm}^{2}{=60cm}^{2}

→Area of Pentagon ABCDE \rm{=(80+60)cm}^{2}{=140cm}^{2}

Therefore,by both the methods,the area we found of the Pentagon \rm{=140cm}^{2}

Answered by Anonymous
7

Answer:

\huge{\underline{\underline{\red{Solution:}}}}

First divide the given pentagon into two trapeziums AXCB and AXDE.

→Area of trapezium ABCX\rm{=}\dfrac{1}{2}\times{4.5}\times{(22+6)cm}^{2}

\rm{=}\dfrac{1}{2}\times{4.5}\times{28cm}^{2}

\rm{=63cm}^{2}

→Area of trapezium AXDE\rm{=}\dfrac{1}{2}\times{5.5}\times{(22+6)cm}^{2}

\rm{=}\dfrac{1}{2}\times{5.5}\times{28cm}^{2}

\rm{=77cm}^{2}

Thus ,the area of Pentagon ABCDE \rm{=(63+77)cm}^{2}{=140cm}^{2}

Similar questions