Math, asked by hashmitha7, 1 year ago

ABCD is a Quadrilateral. Is AB + BC +CD + DA > AC + BD ?

Answers

Answered by yneetu
3
ABCD is a quadrilateral then prove thatAB + BC + CD + DA < 2(AC + BD)?ABCD is a quadrilateral and AC, andBD are the diagonals. Sum of the two sides of a triangle is greater than the third side.

esakki11: yes
yneetu: what
yneetu: yes
Answered by Anonymous
6

Since, the sum of length of any two sides in a triangle should be greater than the Length of third side.


Therefore, In ΔABC,
 \: \: \: \: \textbf{AB + BC &gt; AC} .......... (i)

In ΔADC,
 \: \: \: \: \textbf{AD + DC &gt; AC} .......... (ii)

In ΔDCB,
 \: \: \: \: \textbf{DC + CB &gt; DB} .......... (iii)

In ΔADB,
 \: \: \: \: \textbf{AD + AB &gt; DB} .......... (iv)


\text{\underline{Adding equations (i), (ii), (iii) and (iv) we get:}}


\textbf{AB + BC + AD + DC + DC + CB + AD + AB &gt; AC + AC + DB + DB}

⇒\textbf{(AB+AB) + (BC+BC) + (AD+AD) + (DC+DC) &gt; 2AC + 2DB}

⇒\textbf{2AB + 2BC + 2AD + 2DC &gt; 2(AC+DB)}

⇒\textbf{2(AB + BC + AD + DC) &gt; 2(AC+DB)}

⇒\textbf{AB + BC + AD + DC &gt; AC + DB}


\bold{\red{\fbox{AB + BC + CD + DA &gt; AC + DB}}}


Hence, it is true ✔✅


[ Based on NCERT solutions ]

Attachments:

hashmitha7: Thank You
Anonymous: Welcome ☺
Similar questions