ABCD is a quadrilateral.Is
AB+BC+CD+DA<2(AC+BD)?
Attachments:
Answers
Answered by
4
Answer:
ABCD is a quadrilateral
to prove = AB+BC+CD+DA<2(AC+BD)
Proof
in triangle DOC
DO+OC=CD - 1
in triangle COBAP+
CO+OB=BC - 2
In triangle BOA
BO+OA=AB - 3
In triangle AOD
AO+OD=DA - 4
Add 1,2,3 & 4, we get
DO+OC+CO+OB+BO+OA+AO+OD= CD+BC+AB+DA
2(DO+CO+BO+AO)=CD+BC+AB+DA-(AO+BO=AB,BO+OC=BC,CO+DO=CD,DO+AO=DA)
2(AB+BC+CD+DA)=AC+BD-(AB+CD=BD,BC+DA=AC)
AB+BC+CD+DA<2(AC+BD)
HENCE PROVED
Similar questions