Math, asked by Anonymous, 7 months ago

ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilaterals PQRS is a rhombus.​

Answers

Answered by mehreennaikoo123
14

HEY BUDDY ✌✌

YOUR ANSWER IS IN THE ATTACHMENT..❣❣

Attachments:
Answered by Anonymous
4

Answer:

Let us join AC and BD.

In ΔABC,

P and Q are the mid-points of AB and BC respectively.

∴ PQ || AC and PQ = AC (Mid-point theorem) ... (1)

Similarly in ΔADC,

SR || AC and SR = AC (Mid-point theorem) ... (2)

Clearly, PQ || SR and PQ = SR

Since in quadrilateral PQRS, one pair of opposite sides is equal and parallel to

&lt;!DOCTYPE html&gt;&lt;html lang="en"&gt;&lt;head&gt;&lt;title&gt;CUBE&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;div class="container"&gt;&lt;div id="cube"&gt;&lt;div class="front"&gt;1&lt;/div&gt;&lt;div class="back"&gt;2&lt;/div&gt;&lt;div class="right"&gt;3&lt;/div&gt;&lt;div class="left"&gt;4&lt;/div&gt;&lt;div class="top"&gt;5&lt;/div&gt;&lt;div class="bottom"&gt;6&lt;/div&gt;&lt;/div&gt;&lt;/div&gt;&lt;style&gt;body {padding-left: 30%;padding-top: 5%;}.container {width: 200px;height: 200px;position: relative;-webkit-perspective: 1000px;-moz-perspective: 1000px;}#cube {width: 100%;height: 100%;position: absolute;-webkit-transform-style: preserve-3d;-webkit-animation: rotatecube 10s infinite;</p><p></p><p>-moz-transform-style: preserve-3d;</p><p></p><p>-moz-animation: rotatecube 10s infinite;</p><p></p><p>}</p><p></p><p>#cube div {</p><p></p><p>width: 200px;</p><p></p><p>height: 200px;</p><p></p><p>display: block;</p><p></p><p>position: absolute;</p><p></p><p>border: none;</p><p></p><p>line-height: 200px;</p><p></p><p>text-align: center;</p><p></p><p>font-size: 50px;</p><p></p><p>font-weight: bold;</p><p></p><p>}</p><p></p><p>@-webkit-keyframes rotatecube {</p><p></p><p>0% { -webkit-transform: rotateX(0deg) rotateY(360deg) rotateZ(90deg); }</p><p></p><p>25% { -webkit-transform: rotateX(90deg) rotateY(270deg) rotateZ(180deg); }</p><p></p><p>50% { -webkit-transform: rotateX(180deg) rotateY(180deg) rotateZ(0deg); }</p><p></p><p>75% { -webkit-transform: rotateX(270deg) rotateY(90deg) rotateZ(360deg); }</p><p></p><p>100% { -webkit-transform: rotateX(360deg) rotateY(0deg) rotateZ(270deg); }</p><p></p><p>}</p><p></p><p>@-moz-keyframes rotatecube {</p><p></p><p>0% { -moz-transform: rotateX(0deg) rotateY(360deg) rotateZ(90deg); }</p><p></p><p>25% { -moz-transform: rotateX(90deg) rotateY(270deg) rotateZ(180deg); }</p><p></p><p>50% { -moz-transform: rotateX(180deg) rotateY(180deg) rotateZ(0deg); }</p><p></p><p>75% { -moz-transform: rotateX(270deg) rotateY(90deg) rotateZ(360deg); }</p><p></p><p>100% { -moz-transform: rotateX(360deg) rotateY(0deg) rotateZ(270deg); }</p><p></p><p>}</p><p></p><p>.front {</p><p></p><p>background: rgba(255,0,0,.5);</p><p></p><p>}</p><p></p><p>.back {</p><p></p><p>background: rgba(0,255,0,.5);</p><p></p><p>}</p><p></p><p>.right {</p><p></p><p>background: rgba(0,0,255,.5);</p><p></p><p>}</p><p></p><p>.left {</p><p></p><p>background: rgba(0,255,255,.5);</p><p></p><p>}</p><p></p><p>.top {</p><p></p><p>background: rgba(255,0,255,.5);</p><p></p><p>}</p><p></p><p>.bottom {</p><p></p><p>background: rgba(255,255,0,.5);</p><p></p><p>}</p><p></p><p>#cube .front {</p><p></p><p>-webkit-transform: rotateY(0deg ) translateZ( 100px );</p><p></p><p>-moz-transform: rotateY( 0deg ) translateZ( 100px );</p><p></p><p>}</p><p></p><p>#cube .back {</p><p></p><p>-webkit-transform: rotateX( 180deg ) translateZ( 100px );</p><p></p><p>-moz-transform: rotateX( 180deg ) translateZ( 100px );</p><p></p><p>}</p><p></p><p>#cube .right {</p><p></p><p>-webkit-transform: rotateY( 90deg ) translateZ( 100px );</p><p></p><p>-moz-transform: rotateY( 90deg ) translateZ( 100px );</p><p></p><p>}</p><p></p><p>#cube .left {</p><p></p><p>-webkit-transform: rotateY( -90deg ) translateZ( 100px );</p><p></p><p>-moz-transform: rotateY( -90deg ) translateZ( 100px );</p><p></p><p>}</p><p></p><p>#cube .top {</p><p></p><p>-webkit-transform: rotateX( 90deg ) translateZ( 100px );</p><p></p><p>-moz-transform: rotateX( 90deg ) translateZ( 100px );</p><p></p><p>}</p><p></p><p>#cube .bottom {</p><p></p><p>-webkit-transform: rotateX( -90deg ) translateZ( 100px );</p><p></p><p>-moz-transform: rotateX( -90deg ) translateZ( 100px );</p><p></p><p>}</p><p></p><p>&lt;/style&gt;</p><p></p><p>&lt;/body&gt;</p><p></p><p>&lt;/html&gt;

each other, it is a parallelogram.

∴ PS || QR and PS = QR (Opposite sides of parallelogram)... (3)

In ΔBCD, Q and R are the mid-points of side BC and CD respectively.

∴ QR || BD and QR =BD (Mid-point theorem) ... (4)

However, the diagonals of a rectangle are equal.

∴ AC = BD …(5)

By using equation (1), (2), (3), (4), and (5), we obtain

PQ = QR = SR = PS

Therefore, PQRS is a rhombus

Similar questions