ABCD is a rhombus with angle ABC =56 degree . Determine Angle CAD
Answers
Answered by
7
Answer:
∠BOA = 90º (vertically opposite angle)
∠BA0 = 180 - 56 - 90 = 34º (Sum of angles in a triangle)
∠BCA = 56º (Isosceles triangle)
∠BAC = 180 - 56 - 56 = 68º (Sum of angles in a triangle)
∠CAB = ∠BAC - ∠BAO
∠CAB = 68 - 34 = 34º
Answer: ∠CAB = 34º
Answered by
1
Answer:
CAD=34°
Step-by-step explanation:
Angle CAD will be 34. Because in rhombus opposite angles are equal. Let angle CAD be x. Then the some of its opposite angle and the angle be 2x. Now,
2*56+2x=180°
112°+2x=180°
2x=180°-112°
=68°
x=34°
So angle CAD=34°
Similar questions