Math, asked by Anonymous, 1 year ago

ABCD is a trapezium in which AB || CD and
AD = BC (see Fig. 8.23). Show that
(i) ∠ A = ∠ B
(ii) ∠ C = ∠ D
(iii) ∆ ABC ≅ ∆ BAD
(iv) diagonal AC = diagonal BD
[Hint : Extend AB and draw a line through C
parallel to DA intersecting AB produced at E.]

Answers

Answered by ranirjala
61
Hey mate
Hope this will help you
I will give the other two proofs later
Attachments:

Anonymous: phir check karo fb
ranirjala: Mesenger hai
Anonymous: haan
ranirjala: To usmei message karo
Anonymous: ok
Anonymous: aaya
ranirjala: Aaya
Anonymous: okk
ranirjala: Fb mei aaya messenger mei nhi
Anonymous: koi nahi
Answered by aakashmutum
9

Question-

ABCD is a trapezium in which AB || CD and AD = BC (see figure). Show that

(i )∠A=∠B

(ii )∠C=∠D

(iii) ∆ABC ≅ ∆BAD

(iv) diagonal AC = diagonal BD

Answer-

i) Produce AB to E and draw CF || AD.. .(1)

∵ AB || DC

⇒ AE || DC Also AD || CF

∴ AECD is a parallelogram.

⇒ AD = CE …(1)

[ ∵ Opposite sides of the parallelogram are equal]

But AD = BC …(2) [Given]

By (1) and (2), BC = CF

Now, in ∆BCF, we have BC = CF

⇒ ∠CEB = ∠CBE …(3)

[∵ Angles opposite to equal sides of a triangle are equal]

Also, ∠ABC + ∠CBE = 180° … (4)

[Linear pair]

and ∠A + ∠CEB = 180° …(5)

[Co-interior angles of a parallelogram ADCE]

From (4) and (5), we get

∠ABC + ∠CBE = ∠A + ∠CEB

⇒ ∠ABC = ∠A [From (3)]

⇒ ∠B = ∠A …(6)

(ii) AB || CD and AD is a transversal.

∴ ∠A + ∠D = 180° …(7) [Co-interior angles]

Similarly, ∠B + ∠C = 180° … (8)

From (7) and (8), we get

∠A + ∠D = ∠B + ∠C

⇒ ∠C = ∠D [From (6)]

(iii) In ∆ABC and ∆BAD, we have

AB = BA [Common]

BC = AD [Given]

∠ABC = ∠BAD [Proved]

∴ ∆ABC = ∆BAD [By SAS congruency]

(iv) Since, ∆ABC = ∆BAD [Proved]

⇒ AC = BD [By C.P.C.T.]

Similar questions