ABCD is parallelogram.
The diagonals AC and BD intersect
at point M. The length of
seg AC, AB and AD is 24, 22 and 34
respectively. Find the length of
seg BD.
Answers
Answer:
length of diagonals of parallelohram is same
so, AC =2 X AM
= 2 X 12
= 24
AC = 24
So, AC similar to BD.
I Think This Answer Help You
Answer:
BD = 52
Step-by-step explanation:
Looking at △ACD
⇒ Sides of triangle are 22, 24 and 34
Find ∠CAD using the cosine rule:
Cosine rule says c² = a² + b² - 2abCosC
22² = 34² + 24² - 2(34)(24)CosC
1632CosC = 34² + 24² - 22²
1632CosC = 1248
CosC = 13/17
C = Cos⁻¹(13/17)
C = 40.12°
⇒∠CAD = 40.12°
Find ∠ACD using the cosine rule:
34² = 22² + 24² - 2(22)(24)CosC
1056CosC = 22² + 24² - 34²
1056CosC = -96
CosC = -1/11
C = Cos⁻¹(-1/11)
C = 95.22°
⇒∠ACD = 95.22°
Find ∠BAD:
∠CAB = ∠ACD = 95.22° (Alternate Angles)
∠BAD =∠CAB + ∠ADC
∠BAD =40.12 + 95.22 = 135.34°
⇒∠BAD = 135.34°
Find Length BD using cosine rule:
BD² = 34² + 22² - 2(34)(22)Cos(135.34)
BD² = 2704.1
BD = 52
Answer: BD = 52