Physics, asked by sonalibulbule20, 2 months ago

Abody goes from A to B with a velocity of 20 m/s
and comes back from B to A with a velocity of 30
m/s. The average velocity of the body during the
whole journey is
1) ZETO
2) 25 m/s
3) 24 m/s
4) none of these​

Answers

Answered by NewGeneEinstein
1
  • First velocity=V_A=20m/s
  • Second velocity=V_B=30m/s

We know

\boxed{\sf A_{AVG}=\dfrac{V_A+V_B}{2}}

\\ \sf\longmapsto A_{AVG}=\dfrac{20+30}{2}

\\ \sf\longmapsto A_{AVG}=\dfrac{50}{2}

\\ \sf\longmapsto A_{AVG}=25m/s

Answered by TrustedAnswerer19
68

 \small{ \pink{ \boxed{\boxed{\begin{array}{cc} \maltese\:\bf\:Page-\:1:\:\maltese\\\\\maltese  \bf \: we \: know \: that \\  \sf \:  Displacement \:  is  \: the  \: length  \: between \\  \sf \:  the   initial   \sf \: and  final  \: point  \: of  \: the  \: path  \\  \sf \: \:  which \:  is \:  travelled. \:  \\  \\ </p><p> \odot \blue{ \boxed {\sf \: Average \:  velocity  \:  \bar{v}</p><p> =  \frac{total \: displacement}{total \: time} } }\\ \\   \sf \: In \:  this \:  case \:  the \:  initial  \: point   \\  \sf\: and  \: the \:  final  \: point \:  is \:  the \:  same  \: which \\   \sf \: is \:  A \: ( Since \:  it \:  goes \:  from \:  A \:  to \:  B  \: then \\  \sf \:  returns \:  to \:  B)  \\ \:  \\ </p><p> \bf \: Hence  \: the  \:  \blue{ \sf \: net \:  displacement \:  is \:  \:  =  0 }\\  \\ </p><p></p><p> \sf \: Now \:  if  \: you \:  put \:  it  \: in  \: the \\  \sf  \: formula \:  the \:  average  \: velocity  \: comes \\  \sf \:  out  \: to  \: be \:  \:  =  0. \\  \\  \orange{ \bf \therefore \: average \:  \: velocity \:  \bar{v} = 0} \\  \\ </p><p></p><p> \\ \underline{  \sf \: Note:} \sf \:  The  \: velocity \:  from  \: A   \\  \sf\: to \:  B  \: and  \: from  \: B  \: to \:  A  \: does  \\  \sf\:  not  \: matter \:  since \:  the \:  displacement \\  \sf \:  is \:  0  \: and \:  it  \: is \:  given \:  only \:  to \:  confuse \: \\   \sf  the \:  one \:  who \:  is  \: solving. \\  \: </p><p></p><p>\: \end{array}}}}}

Similar questions