Math, asked by sherinliju, 1 year ago

AC and AD are tangents to a circle with center O at c and d respectively. if angle BCD=44, then find angle CAD,angle CBD,angle ACD.

Answers

Answered by saltywhitehorse
20

Answer:

\angle CAD=88^\circ

\angle CBD=92^\circ

\angle ACD=46^\circ

Step-by-step explanation:

Let B is the center point of the circle.

From Point A, draw two tangents of a the circle AC and AD

Draw two lines BC and BD

Given that \angle BCD=44^\circ

In \Delta BCD BC=BD\text{ Both are radius of the circle}

Therefore \Delta BCD is a Isosceles Triangle, So

\angle BCD=\angle BDC=44^\circ

We know that

\angle BCD+\angle BDC+\angle CBD=180^\circ\\\\\Rightarrow44^\circ+44^\circ+\angle CBD=180^\circ\\\\\Rightarrow\angle CBD=180^\circ-88^\circ=92^\circ

\therefore\angle CBD=92^\circ

We know that radius is the perpendicular of the tangent

therefore, \angle ADB =\angle ACB=90^\circ

\angle ACB=\angle ACD+\angle BCD\\\\\Rightarrow\angle ACD=\angle ACB-\angle BCD\\\\\Rightarrow\angle ACD=90^\circ-44^\circ=46^\circ

\therefore\angle ACD=46^\circ

therefore, \angle ADB =\angle ACB=90^\circ

\angle ADB=\angle ADC+\angle BDC\\\\\Rightarrow\angle ADC=\angle ADB-\angle BDC\\\\\Rightarrow\angle ADC=90^\circ-44^\circ=46^\circ

\therefore\angle ADC=46^\circ

In \Delta ACD

\angle CAD+\angle ACD+\angle ADC=180^\circ\\\\\Rightarrow\angle CAD=180^\circ-\angle ACD-\angle ADC\\\\\Rightarrow\angle CAD=180^\circ-46^\circ-46^\circ=88^\circ

\therefore\angle CAD=88^\circ

Attachments:
Answered by Nehalunthi
1

Step-by-step explanation:

angle ACD equal 46 degree

angle CAD 88 degree

angle COD equal 92 degree

angle CBD equal 80 degree

Similar questions