Physics, asked by Rohanv10, 5 months ago

Acar has initial velocity of 72 km h It is accelerated at 2 ms Calculate the final velocity
and the distance covered after 3 seconds. What is the distance covered by the car in 3
second
Ans: 26 m s. 69 m​

Answers

Answered by brainlyofficial11
130

Aɴsʀ

we have,

  • initial velocity, u = 72 km/h

first we have to convert the unit of velocity into m/s

  \bold{\implies u =  \frac{ 72 \times 1 \cancel{000}}{36 \cancel{0 0}} m {s}^{ - 1} } \\  \\   \bold{\implies u =  \frac{ \cancel{72} \times 10}{ \cancel{36}}    \:m {s}^{ - 1}  \:  \:  \:  \: } \\  \\ \bold{  \implies u =  2 \times 10 \: m {s}^{ - 1}  \:   \:  \:  \:  \:  \:  \:} \\  \\   \bold{\implies u = 20 \: m {s}^{ - 1}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:}

_______________________________

so, now we have,

  • initial velocity, u = 20m/s
  • acceleration, a = 2 m/s²
  • time taken, t = 3 sec
  • final velocity, v = ?
  • distance, s = ?

now, by first equation of motion :

  \boxed{ \red {\bold{at = v - u}}} \\

 \bold{   :    \implies 2 \times 3=v - 20 } \\  \\  \bold{ : \implies6 = v - 20 } \:  \:  \:  \:  \:   \: \:  \\  \\  \bold{ :  \implies \: v = 6 + 20} \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{ :  \implies \: \boxed{  \pink {\bold{v = 26 \: m {s}^{ - 1} }}}}

_______________________________

now, by second equation of motion:

 \boxed{  \red{\bold{s = ut +  \frac{1}{2} a {t}^{2} }}} \\

 \bold{ :  \implies s =20 \times 3 +  \frac{1}{ \cancel{2}}   \times \cancel{ 2} \times  {3}^{2} } \\  \\  \bold{ :  \implies s = 60 + 9} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\   \bold{ : \implies \: \boxed{  \pink{\bold{ s = 69 \: m}}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

_______________________________

hence, final velocity of the car is 26 m/s and distance covered by the car is 69 m

_______________________________

☯︎ important :-

  • first equation of motion : at = v - u
  • second equation of motion : s = ut + ½ at²
  • third equation of motion : v² = u² + 2as
Answered by Ataraxia
56

Given :-

  • Initial velocity = 72 km/h

                                = 72 × 5/18

                                = 20 m/s

  • Acceleration = 2 m/s²

To Find :-

  • Final velocity after 3 seconds.
  • Distance covered after 3 seconds.

Solution :-

We can find velocity after 3 seconds by using first equation of kinematics.

\underline{\boxed{\bf v = u+at}}

\longrightarrow \sf v = 20 + 3 \times 6 \\\\\longrightarrow v = 20+6 \\\\\longrightarrow \bf v = 26

Velocity after 3 seconds :- 26 m/s

We can find distance covered after 3 seconds by using the second equation of kinematics .

\underline{\boxed{\bf S = ut+ \dfrac{1}{2}at^2}}

\longrightarrow \sf S = 20 \times 3+ \dfrac{1}{2} \times 2 \times 3 ^2 \\\\\longrightarrow S = 60+3 \times 3 \\\\\longrightarrow S = 60+ 9 \\\\\longrightarrow \bf S = 69

Distance covered after 3 seconds :- 69 m

Similar questions